Skip to main content
Log in

Using Glow Stick Chemistry for Biological Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study describes an imaging strategy based on glow stick chemistry to non-invasively image oxidative stress and reactive oxygen species (ROS) production in living animals.

Procedures

Upon stimulation, phagocytes produce toxic levels of ROS to kill engulfed microorganisms. The mitochondrial respiratory chain continually generates low levels of superoxide (O2·) that serve as a source for generation of downstream ROS, which function as regulatory signaling intermediaries. A ROS-reacting substrate, 2-methyl-6-[4-methoxyphenyl]-3,7-dihydroimidazo[1,2-a]pyrazin-3-one hydrochloride, was used as the chemical energy donor for generating energy transfer luminescence in phagosomes and mitochondria.

Results

Using targeted photoluminescent dyes with specific subcellular localization that serve as chemical energy recipients, our imaging data demonstrate proof-of-concept for using glow stick chemistry to visualize ROS production associated with phagocytosis and mitochondrial respiration in living mice.

Conclusions

Glow stick imaging is a complementary hybrid of chemiluminescence and photoluminescence imaging, capable of generating red or far-red emission for deep tissue imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leblond F, Davis SC, Valdes PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B 98:77–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208

    PubMed  Google Scholar 

  3. Roda A, Pasini P, Mirasoli M et al (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 22:295–303

    Article  CAS  PubMed  Google Scholar 

  4. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  CAS  PubMed  Google Scholar 

  5. Greer LF III, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74

    Article  CAS  PubMed  Google Scholar 

  6. Rauhut MM (1969) Chemiluminescence from concerted peroxide decomposition reactions. Acc Chem Res 2:80–87

    Article  CAS  Google Scholar 

  7. Rauhut MM, Bollyky LJ, Roberts BG et al (1967) Chemiluminescence from reactions of electronegatively substituted aryl oxalates with hydrogen peroxide and fluorescent compounds. J Am Chem Soc 89:6515–6522

    Article  CAS  Google Scholar 

  8. Pfleger KD, Eidne KA (2006) Illuminating insights into protein–protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3:165–174

    Article  CAS  PubMed  Google Scholar 

  9. Freeman R, Liu X, Willner I (2011) Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133:11597–11604

    Article  CAS  PubMed  Google Scholar 

  10. Nakano M, Sugioka K, Ushijima Y, Goto T (1986) Chemiluminescence probe with Cypridina luciferin analog, 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-one, for estimating the ability of human granulocytes to generate O2. Anal Biochem 159:363–369

    Article  CAS  PubMed  Google Scholar 

  11. Akutsu K, Nakajima H, Katoh T et al (1995) Chemiluminescence of Cipridina luciferin analogues. Part 2. Kinetic studies on the reaction of 2-methyl-6-phenylimidazo[1,2-a]pyrazin-3(7H)-one (CLA) with superoxide: hydroperoxyl radical is an actual active species used to initiate the reaction. J Chem Soc Perkin Trans 2:1699–1706

    Article  Google Scholar 

  12. Kambayashi Y, Ogino K (2003) Reestimation of Cypridina luciferin analogs (MCLA) as a chemiluminescence probe to detect active oxygen species—cautionary note for use of MCLA. J Toxicol Sci 28:139–148

    Article  CAS  PubMed  Google Scholar 

  13. Tarpey MM, White CR, Suarez E et al (1999) Chemiluminescent detection of oxidants in vascular tissue: lucigenin but not coelenterazine enhances superoxide formation. Circ Res 84:1203–1211

    Article  CAS  PubMed  Google Scholar 

  14. Mitani M, Yokoyama Y, Ichikawa S et al (1994) Determination of horserdish peroxidase concentration using the chemiluminescence of Cypridina luciferin analogue, 2 methyl-6-(p-methyoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-one. J Biolumin Chemilumin 9:355–361

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi A, Totsune-Nakano H, Nakano M et al (1989) Generation of O2 and tyrosine cation-mediated chemiluminescence during the fertilization of sea urchin eggs. FEBS Lett 246:117–119

    Article  CAS  PubMed  Google Scholar 

  16. Baker CJ, Deahl K, Domek J, Orlandi EW (2000) Scavenging of H2O2 and production of oxygen by horseradish peroxidase. Arch Biochem Biophys 382:232–237

    Article  CAS  PubMed  Google Scholar 

  17. Babior BM (1999) NADPH oxidase: an update. Blood 93(5):1464–1476

    CAS  PubMed  Google Scholar 

  18. Gross S, Gammon ST, Moss BL et al (2009) Bioluminescence imaging of myeloperoxidase activity in vivo. Nat Med 15:455–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tseng JC, Kung AL (2012) In vivo imaging of inflammatory phagocytes. Chem Biol 19:1199–1209

    Article  CAS  PubMed  Google Scholar 

  20. Green K, Brand MD, Murphy MP (2004) Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 53(Suppl 1):S110–S118

    Article  CAS  PubMed  Google Scholar 

  21. Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci U S A 88:3671–3675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ogata E, Rasmussen H (1966) Valinomycin and mitochondrial ion transport. Biochemistry 5:57–66

    Article  CAS  PubMed  Google Scholar 

  23. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tseng JC, Wang Y, Banerjee P, Kung AL (2012) Incongruity of imaging using fluorescent 2-DG conjugates compared to 18F-FDG in preclinical cancer models. Mol Imaging Biol 14:553–560

    Article  PubMed  Google Scholar 

  25. Kessler RJ, Tyson CA, Green DE (1976) Mechanism of uncoupling in mitochondria: uncouplers as ionophores for cycling cations and protons. Proc Natl Acad Sci U S A 73:3141–3145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Freeman BA, Crapo JD (1981) Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem 256:10986–10992

    CAS  PubMed  Google Scholar 

  27. Churchill EN, Szweda LI (2005) Translocation of deltaPKC to mitochondria during cardiac reperfusion enhances superoxide anion production and induces loss in mitochondrial function. Arch Biochem Biophys 439:194–199

    Article  CAS  PubMed  Google Scholar 

  28. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707

    Article  CAS  PubMed  Google Scholar 

  29. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  CAS  PubMed  Google Scholar 

  30. Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181

    Article  CAS  PubMed  Google Scholar 

  31. Collins TJ, Berridge MJ, Lipp P, Bootman MD (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21:1616–1627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Osman AM, Laane C, Hilhorst R (2001) Enhanced sensitivity of Cypridina luciferin analogue (CLA) chemiluminescence for the detection of *O2(−) with non-ionic detergents. Luminescence 16:45–50

    Article  CAS  PubMed  Google Scholar 

  33. Lee D, Khaja S, Velasquez-Castano JC et al (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mat 6:765–769

    Article  CAS  Google Scholar 

  34. Dragulescu-Andrasi A, Chan CT, De A et al (2011) Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects. Proc Natl Acad Sci U S A 108:12060–12065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. So MK, Xu C, Loening AM, Gambhir SS et al (2005) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343

    Article  Google Scholar 

  36. Xiong L, Shuhendler AJ, Rao J (2012) Self-luminating BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193

    Article  PubMed Central  PubMed  Google Scholar 

  37. Zhang N, Francis KP, Prakash A, Ansaldi D (2013) Enhance detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nat Med 19:500–505

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nancy Lurie Marks Foundation. We thank Kin K. Wong for his assistance in preparing this report. We thank Dr. Lisa Cameron at DFCI for providing technical support of microscopic imaging. We thank Dr. Nancy E. Kohl and Dr. Annick Van den Abbeele for critical reading and insightful discussion.

Conflict of Interest

D.B., T.T., and A.L.K. declare no conflict of interest in this study. J.–C.T. submitted a patent application based on this study (DFCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Chieh Tseng.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6.73 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, JC., Bailey, D., Tupper, T. et al. Using Glow Stick Chemistry for Biological Imaging. Mol Imaging Biol 16, 478–487 (2014). https://doi.org/10.1007/s11307-014-0721-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0721-8

Key words

Navigation