Skip to main content

Drug Absorption via the Nasal Route: Opportunities and Challenges

  • Chapter
  • First Online:
Nasal Drug Delivery

Abstract

Drug administration via the nasal route appears to be another reliable way of getting drugs into systemic circulation. The nasal route has easy access, large surface area, is well vascularized, and circumvents first-pass metabolism. Currently, there is a lot of attention on nasal delivery of drugs. This route has been found to aid rapid absorption of drugs into systemic circulation. The mucosa found in the nasal cavity has been shown to aid absorption of bioadhesive drug delivery devices. Microspheres, liposomes, and gels expand readily when they come into contact with the mucosa in the nasal cavity. Furthermore, to enhance absorption of drugs, a number of methods have been used to extend residence time in the nasal cavity. However, prospects of using the nasal route as a means of getting drugs into systemic circulation face a number of challenges. Some of which include barriers in the mucosa and toxicity which may be associated with the excipients used. Drug absorption enhancers are currently being explored to improve intranasal drug delivery. Drug absorption via the nasal route (opportunities and challenges) is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jadhav K, Gambhire M, Shaikh I, Kadam V, Pisal S. Nasal drug delivery system-factors affecting and applications. Curr Drug Ther. 2008;2(1):27–38.

    Article  Google Scholar 

  2. Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res [Internet]. 2021 [cited 2021 Oct 10];1–23. Available from: https://link.springer.com/article/10.1007/s13346-020-00891-5.

  3. Small P, Keith PK, Kim H. Allergic rhinitis. Allergy, Asthma Clin Immunol [Internet]. 2018 [cited 2021 Oct 10];14(2):1–11. Available from: https://aacijournal.biomedcentral.com/articles/10.1186/s13223-018-0280-7.

  4. Rudack C. Actual therapeutic management of allergic and hyperreactive nasal disorders. GMS Curr Top Otorhinolaryngol Head Neck Surg [Internet]. 2004 [cited 2021 Oct 10];3:Doc04. Available from: /pmc/articles/PMC3199794/.

    Google Scholar 

  5. Sur DKC, Plesa ML. Treatment of allergic rhinitis. Am Fam Physician [Internet]. 2015 [cited 2021 Oct 10];92(11):985–92. Available from: www.aafp.org/afp.

  6. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm [Internet]. 2007 [cited 2021 Oct 10];337(1–2):1–24. Available from: https://pubmed.ncbi.nlm.nih.gov/17475423/.

  7. Landau AJ, Eberhardt RT, Frishman WH. Intranasal delivery of cardiovascular agents: an innovative approach to cardiovascular pharmacotherapy. Am Heart J [Internet]. 1994 [cited 2021 Oct 10];127(6):1594–9. Available from: https://pubmed.ncbi.nlm.nih.gov/8197988/.

  8. Dimitrov DS. Therapeutic proteins. Methods Mol Biol [Internet]. 2012 [cited 2021 Oct 10];899:1–26. Available from: /pmc/articles/PMC6988726/.

    Google Scholar 

  9. Gomez D, Martinez JA, Hanson LR, Frey WH, Toth CC. Intranasal treatment of neurodegenerative diseases and stroke. Front Biosci - Sch [Internet]. 2012 [cited 2021 Oct 10];4 S(1):74–89. Available from: https://pubmed.ncbi.nlm.nih.gov/22202044/.

  10. Ong W-Y, Shalini S-M, Costantino L. Nose-to-brain drug delivery by nanoparticles in the treatment of Neurological disorders. Curr Med Chem [Internet]. 2014 [cited 2021 Oct 10];21(37):4247–56. Available from: https://pubmed.ncbi.nlm.nih.gov/25039773/.

  11. Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-Kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol. 2021;(64):102642.

    Google Scholar 

  12. Frey II WH. Method for administering neurologic agents to the brain. Eur Pat Specif [Internet]. 1997 [cited 2021 Oct 10];11(3):55. Available from: https://www.m-culture.go.th/mculture_th/download/king9/Glossary_about_HM_King_Bhumibol_Adulyadej’s_Funeral.pdf.

  13. Bruinsmann FA, Vaz GR, De Cristo Soares Alves A, Aguirre T, Pohlmann AR, Guterres SS, et al. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: preclinical and clinical trials. Molecules. 2019;24(23):4312.

    Google Scholar 

  14. Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today [Internet]. 2020 Jan 1 [cited 2021 Oct 10];25(1):185–94. Available from: https://pubmed.ncbi.nlm.nih.gov/31629966/.

  15. Engio L, Agu RU. Systemic delivery of peptide hormones using nasal powders: strategies and future perspectives. Drug Deliv Lett. 2019;9(4):286–98.

    Article  CAS  Google Scholar 

  16. Jitendra, Sharma PK, Bansal S, Banik A. Noninvasive routes of proteins and peptides drug delivery. Indian J Pharm Sci [Internet]. 2011 Jul [cited 2021 Oct 10];73(4):367–75. Available from: /pmc/articles/PMC3374550/.

    Google Scholar 

  17. Mohanty RR, Das S. Inhaled insulin - current direction of insulin research. J Clin Diagnostic Res [Internet]. 2017 [cited 2021 Oct 10];11(4):OE01–2. Available from: /pmc/articles/PMC5449846/.

    Google Scholar 

  18. Marx D, Williams G, Birkhoff M. Intranasal drug administration — an attractive delivery route for some drugs. Drug Discov Dev - From Mol to Med [Internet]. 2015 [cited 2021 Oct 10]; Available from: https://www.intechopen.com/chapters/48052.

  19. Gladstone JP, Gawel M. Newer formulations of the triptans: advances in migraine management. Drugs [Internet]. 2003 [cited 2021 Oct 10];63(21):2285–305. Available from: https://pubmed.ncbi.nlm.nih.gov/14524731/.

  20. Fauteux-Lamarre E, McCarthy M, Quinn N, Davidson A, Legge D, Lee KJ, et al. Oral ondansetron to reduce vomiting in children receiving intranasal fentanyl and inhaled nitrous oxide for procedural sedation and analgesia: a randomized controlled trial. Ann Emerg Med [Internet]. 2020 [cited 2021 Oct 10];75(6):735–43. Available from: https://pediatrics.aappublications.org/content/146/1_MeetingAbstract/199.1.

  21. Saunders M, Adelgais K, Nelson D. Use of intranasal fentanyl for the relief of pediatric orthopedic trauma pain. Acad Emerg Med [Internet]. 2010 [cited 2021 Oct 10];17(11):1155–61. Available from: https://pubmed.ncbi.nlm.nih.gov/21175512/.

  22. Zaman M, Chandrudu S, Toth I. Strategies for intranasal delivery of vaccines. Drug Deliv Transl Res [Internet]. 2013 [cited 2021 Oct 10];3(1):100–9. Available from: /pmc/articles/PMC3539070/.

    Google Scholar 

  23. Xu Y, Yuen PW, Lam JKW. Intranasal DNA vaccine for protection against respiratory infectious diseases: the delivery perspectives. Pharmaceutics [Internet]. 2014 [cited 2021 Oct 10];6(3):378–415. Available from: /pmc/articles/PMC4190526/.

    Google Scholar 

  24. Fehervari Z. Intranasal vaccination. Nat Immunol [Internet]. 2021 [cited 2021 Oct 10];22(9):1071. Available from: https://www.nature.com/articles/s41590-021-01016-x.

  25. Lavelle EC, Ward RW. Mucosal vaccines — fortifying the frontiers. Nat Rev Immunol [Internet]. 2021 [cited 2021 Oct 10];1–15. eAvailable from: https://www.nature.com/articles/s41577-021-00583-2.

  26. Almeida M, Borges O. Nasal vaccines against hepatitis B: an update. Curr Pharm Biotechnol [Internet]. 2015 [cited 2021 Oct 10];16(10):882–90. Available from: https://pubmed.ncbi.nlm.nih.gov/25941886/.

  27. Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–70.

    Article  PubMed  Google Scholar 

  28. Cingi C, Bayar Muluk N, Mitsias DI, Papadopoulos NG, Klimek L, Laulajainen-Hongisto A, et al. The nose as a route for therapy: part 1. Pharmacotherapy. Front Allergy. 2021;2:1.

    Article  Google Scholar 

  29. Bitter C, Suter-Zimmermann K, Surber C. Nasal drug delivery in humans. Curr Probl Dermatol. 2011;40(c):20–35.

    Article  CAS  PubMed  Google Scholar 

  30. Upadhyay S, Parikh A, Joshi P, Upadhyay UM, Chotai NP. Intranasal drug delivery system- A glimpse to become maestro. J Appl Pharm Sci. 2011;1(3):34–44.

    Google Scholar 

  31. Touitou E, Illum L. Nasal drug delivery. Drug Deliv Transl Res [Internet]. 2013 Nov 8 [cited 2021 Oct 10];3(1):1–3. Available from: https://link.springer.com/article/10.1007/s13346-012-0111-1.

  32. Veronesi MC, Alhamami M, Miedema SB, Yun Y, Ruiz-Cardozo M, Vannier MW. Imaging of intranasal drug delivery to the brain. Am J Nucl Med Mol Imaging [Internet]. 2020 [cited 2021 Oct 10];10(1):1–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32211216%0A http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC7076302.

  33. Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res [Internet]. 2021 [cited 2021 Oct 10]; Available from: https://www.meta.org/papers/intranasal-drug-delivery-opportunities-and/33491126.

  34. Nimbalkar VV, Pansare PM, Nishane BB. Screening methods for hepatoprotective agents in experimental animal’s. Res J Pharm Technol. 2015;8(12):1725–46.

    Article  Google Scholar 

  35. Ghadiri M, Young PM, Traini D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics [Internet]. 2019;11(3):113. Available from: https://www.mdpi.com/1999-4923/11/3/113.

  36. Aungst BJ. Absorption enhancers: applications and advances. AAPS J [Internet]. 2012 [cited 2021 Oct 11];14(1):10–8. Available from: /pmc/articles/PMC3291189/.

    Google Scholar 

  37. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev [Internet]. 2009 [cited 2021 Oct 11];61(2):158–71. Available from: /pmc/articles/PMC2667119/.

    Google Scholar 

  38. Jayaraman S, Song Y, Vetrivel L, Shankar L, Verkman AS. Noninvasive in vivo fluorescence measurement of airway-surface liquid depth, salt concentration, and pH. J Clin Invest [Internet]. 2001 [cited 2021 Oct 11];107(3):317–24. Available from: /pmc/articles/PMC199195/.

    Google Scholar 

  39. Ahmed A, K.S. Yadav H, V. Lakshmi S, V.N. Namburi B, G. Shivakumar H. Mucoadhesive nanoparticulate system for oral drug delivery: a review. Curr Drug Ther. 2012;7(1):42–55.

    Article  CAS  Google Scholar 

  40. Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med [Internet]. 2010 [cited 2021 Oct 11];363(23):2233–47. Available from: https://pubmed.ncbi.nlm.nih.gov/21121836/.

  41. Ali MS, Pearson JP. Upper airway mucin gene expression: a review. Laryngoscope. 2007;117(5):932–8.

    Article  CAS  PubMed  Google Scholar 

  42. Miles L. LibGuides: BIO 140 – Human biology I - Textbook: Chapter 19 - Accessory organs in digestion. [cited 2021 Oct 11]. Available from: https://guides.hostos.cuny.edu/bio140/5-19.

  43. Dean CH. Normal and abnormal lung development-recent advances. Pediatr Pulmonol [Internet]. 2014;49:S25–S26. Available from: https://www.embase.com/search/results?subaction=viewrecord%7B%5C&%7Did=L71527956%7B%5C&%7Dfrom=export%0Ahttp://dx.doi.org/10.1002/ppul.23066.

  44. Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J [Internet]. 2015 [cited 2021 Oct 22];17(6):1327. Available from: /pmc/articles/PMC4627459/.

    Google Scholar 

  45. Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021 59 [Internet]. 2021 [cited 2021 Oct 22];5(9):951–67. Available from: https://www.nature.com/articles/s41551-021-00698-w.

  46. T F. Potential for pharmaceutical excipients to impact absorption: a mechanistic review for BCS Class 1 and 3 drugs. Eur J Pharm Biopharm [Internet]. 2019 [cited 2021 Oct 22];141:130–8. Available from: https://pubmed.ncbi.nlm.nih.gov/31128247/.

  47. Marple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg [Internet]. 2004 [cited 2021 Oct 22];130(1):131–41. Available from: https://pubmed.ncbi.nlm.nih.gov/14726922/.

  48. CHMP. Questions and answers on Benzalkonium chloride in the. 2014 [cited 2021 Oct 22]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003412.pdf.

  49. Ho CY, Wu MC, Lan MY, Tan CT, Yang AH. In vitro effects of preservatives in nasal sprays on human nasal epithelial cells. Am J Rhinol. 2008;22(2):125–9.

    Article  PubMed  Google Scholar 

  50. Naqvi S, Panghal A, Flora SJS. Nanotechnology: a promising approach for delivery of neuroprotective drugs. Front Neurosci. 2020;0:494.

    Article  Google Scholar 

  51. la Torre A, Rocha L, Salgado-Ceballos H, García Casillas P, Luna-Barcenas G. Nanotechnology as potential strategy for the treatment of pharmacoresistant epilepsy and comorbid psychiatric disorders. Mini-Reviews Med Chem. 2016;17(3):237–46.

    Article  Google Scholar 

  52. Bellew DSD, Johnson DKL, Nichols MMD, Kummer DT. Effect of intranasal vasoconstrictors on blood pressure: a randomized, double-blind, placebo-controlled trial. J Emerg Med [Internet]. 2018 [cited 2021 Oct 22];55(4):455. Available from: /pmc/articles/PMC6202065/.

    Google Scholar 

  53. Davis SS, Illum L. Absorption enhancers for nasal drug delivery. Clin Pharmacokinet [Internet]. 2003 [cited 2021 Oct 11];42(13):1107–28. Available from: https://link.springer.com/article/10.2165/00003088-200342130-00003.

  54. Maher S, Casettari L, Illum L. Transmucosal absorption enhancers in the drug delivery field. Pharmaceutics [Internet]. 2019 Jul 1 [cited 2021 Oct 11];11(7). Available from: /pmc/articles/PMC6680553/.

    Google Scholar 

  55. Nakama Y. Surfactants. Cosmet Sci Technol Theor Princ Appl. 2017;231–44.

    Google Scholar 

  56. Li Y, Li J, Zhang X, Ding J, Mao S. Non-ionic surfactants as novel intranasal absorption enhancers: in vitro and in vivo characterization. Drug Deliv [Internet]. 2016 [cited 2021 Oct 11];23(7):2272–9. Available from: https://www.tandfonline.com/doi/abs/10.3109/10717544.2014.971196.

  57. Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules [Internet]. 2015 [cited 2021 Oct 11];20(8):14451–73. Available from: /pmc/articles/PMC6332414/.

    Google Scholar 

  58. Bonferoni MC, Rossi S, Sandri G, Ferrari F, Gavini E, Rassu G, et al. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics [Internet]. 2019 [cited 2021 Oct 11];11(2). Available from: /pmc/articles/PMC6409749/.

    Google Scholar 

  59. N.Srija SS& VUMR. A review on microemulsion in novel drug delivery system. Int J Trends Pharm Life Sci. 2015;1(3):457–67.

    Google Scholar 

  60. Duncan Hite R, Grier BL, Moseley Waite B, Veldhuizen RA, Possmayer F, Yao LJ, et al. Surfactant protein B inhibits secretory phospholipase A 2 hydrolysis of surfactant phospholipids. Am J Physiol - Lung Cell Mol Physiol [Internet]. 2012 [cited 2021 Oct 11];302(2):257–65. Available from: /pmc/articles/PMC3349360/.

    Google Scholar 

  61. Veldhuizen EJA, Haagsman HP. Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta Biomembr. 2000;1467(2):255–70.

    Article  CAS  Google Scholar 

  62. Holm BA, Wang Z, Egan EA, Notter RH. Content of dipalmitoyl phosphatidylcholine in lung surfactant: ramifications for surface activity. Pediatr Res [Internet]. 1996 [cited 2021 Oct 12];39(5):805–11. Available from: https://www.nature.com/articles/pr19962529.

  63. Codrons V, Vanderbist F, Ucakar B, Préat V, Vanbever R. Impact of formulation and methods of pulmonary delivery on absorption of parathyroid hormone (1–34) from rat lungs. J Pharm Sci [Internet]. 2004 [cited 2021 Oct 12];93(5):1241–52. Available from: http://jpharmsci.org/article/S0022354916315040/fulltext.

  64. Treyer A, Mateus A, Wiśniewski JR, Boriss H, Matsson P, Artursson P. Intracellular drug bioavailability: effect of neutral lipids and phospholipids. Mol Pharm [Internet]. 2018 [cited 2021 Oct 12];15(6):2224–33. Available from: https://pubs.acs.org/doi/full/10.1021/acs.molpharmaceut.8b00064.

  65. Zheng J, Zhang G, Lu Y, Fang F, He J, Li N, et al. Effect of pulmonary surfactant and phospholipid hexadecanol tyloxapol on recombinant human-insulin absorption from intratracheally administered dry powders in diabetic rats. Chem Pharm Bull [Internet]. 2010 [cited 2021 Oct 12];58(12):1612–6. Available from: https://pubmed.ncbi.nlm.nih.gov/21139264/.

  66. Zheng J, Zhang G, Lu Y, Fang F, He J, Li N, et al. Effect of pulmonary surfactant and phospholipid hexadecanol tyloxapol on recombinant human-insulin absorption from intratracheally administered dry powders in diabetic rats. Chem Pharm Bull. 2010;58(12):1612–6.

    Article  CAS  Google Scholar 

  67. Matsukawa Y, Lee VHL, Crandall ED, Kim KJ. Size-dependent dextran transport across rat alveolar epithelial cell monolayers. J Pharm Sci [Internet]. 1997 [cited 2021 Oct 12];86(3):305–9. Available from: https://pubmed.ncbi.nlm.nih.gov/9050797/.

  68. Pavlović N, Goločorbin-Kon S, Danić M, Stanimirov B, Al-Salami H, Stankov K, et al. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol. 2018;9(NOV):1283.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M. Application of bile acids in drug formulation and delivery. Front Life Sci [Internet]. 2013 [cited 2021 Oct 12];7(3–4):112–22. Available from: https://www.tandfonline.com/doi/abs/10.1080/21553769.2013.879925.

  70. Sørli JB, Balogh Sivars K, Da Silva E, Hougaard KS, Koponen IK, Zuo YY, et al. Bile salt enhancers for inhalation: correlation between in vitro and in vivo lung effects. Int J Pharm [Internet]. 2018 [cited 2021 Oct 12];550(1–2):114–22. Available from: https://pubmed.ncbi.nlm.nih.gov/30125651/.

  71. Karasulu E, Yavaşoǧlu A, Evrenşanal Z, Uyanikgil Y, Karasulu HY. Permeation studies and histological examination of sheep nasal mucosa following administration of different nasal formulations with or without absorption enhancers. Drug Deliv [Internet]. 2008 [cited 2021 Oct 12];15(4):219–25. Available from: https://pubmed.ncbi.nlm.nih.gov/18446567/.

  72. Morales JO, Peters JI, Williams RO. Surfactants: their critical role in enhancing drug delivery to the lungs. Ther Deliv [Internet]. 2011 May 16 [cited 2021 Oct 12];2(5):623–41. Available from: https://www.future-science.com/doi/abs/10.4155/tde.11.15.

  73. Ghadiri M, Canney F, Pacciana C, Colombo G, Young PM, Traini D. The use of fatty acids as absorption enhancer for pulmonary drug delivery. Int J Pharm. 2018;541(1–2):93–100.

    Article  CAS  PubMed  Google Scholar 

  74. Shao Z, Mitra AK. Bile salt–fatty acid mixed micelles as nasal absorption promoters. III. Effects on nasal transport and enzymatic degradation of acyclovir prodrugs. Pharm Res An Off J Am Assoc Pharm Sci [Internet]. 1994 [cited 2021 Oct 12];11(2):243–50. Available from: https://link.springer.com/article/10.1023/A:1018955424431.

  75. Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev. 2021;171:266–88.

    Article  CAS  PubMed  Google Scholar 

  76. Pérez-Reytor D, Puebla C, Karahanian E, García K. Use of short-chain fatty acids for the recovery of the intestinal epithelial barrier affected by bacterial toxins. Front Physiol [Internet]. 2021 [cited 2021 Oct 12];12:650313. Available from: /pmc/articles/PMC8181404/.

    Google Scholar 

  77. Sawai T, Drongowski RA, Lampman RW, Coran AG, Harmon CM. The effect of phospholipids and fatty acids on tight-junction permeability and bacterial translocation. Pediatr Surg Int [Internet]. 2001 [cited 2021 Oct 12];17(4):269–74. Available from: https://pubmed.ncbi.nlm.nih.gov/11409160/.

  78. Serini S, Cassano R, Trombino S, Calviello G. Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: potential application in cardiovascular and neoplastic diseases. Int J Nanomedicine [Internet]. 2019 [cited 2021 Oct 12];14:2809–28. Available from: /pmc/articles/PMC6488162/.

    Google Scholar 

  79. Al-Khalaifah H. Modulatory effect of dietary polyunsaturated fatty acids on immunity, represented by phagocytic activity. Front Vet Sci [Internet]. 2020 [cited 2021 Oct 12];7:569939. Available from: /pmc/articles/PMC7536543/.

    Google Scholar 

  80. Del Vecchio G, Tscheik C, Tenz K, Helms HC, Winkler L, Blasig R, et al. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells. Mol Pharm [Internet]. 2012 [cited 2021 Oct 12];9(9):2523–33. Available from: https://pubs.acs.org/doi/abs/10.1021/mp3001414.

  81. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems – an overview. Acta Pharm Sin B. 2013;3(6):361–72.

    Article  Google Scholar 

  82. Padula C, Pescina S, Nicoli S, Santi P. New insights on the mechanism of fatty acids as buccal permeation enhancers. Pharmaceutics [Internet]. 2018 [cited 2021 Oct 12];10(4). Available from: /pmc/articles/PMC6321376/.

    Google Scholar 

  83. Sonia TA, Sharma CP. Lipids and inorganic nanoparticles in oral insulin delivery. Oral Deliv Insul. 2014:219–56.

    Google Scholar 

  84. Smułek W, Kaczorek E, Hricovíniová Z. Alkyl xylosides: physico-chemical properties and influence on environmental bacteria cells. J Surfactants Deterg [Internet]. 2017 [cited 2021 Oct 13];20(6):1269–79. Available from: https://link.springer.com/article/10.1007/s11743-017-2012-2.

  85. Michael Danielsen E, Hansen GH. Probing the action of permeation enhancers sodium cholate and n-dodecyl-β-d-maltoside in a porcine jejunal mucosal explant system. Pharmaceutics [Internet]. 2018 [cited 2021 Oct 13];10(4). Available from: /pmc/articles/PMC6320951/.

    Google Scholar 

  86. Arnold JJ, Ahsan F, Meezan E, Pillion DJ. Correlation of tetradecylmaltoside induced increases in nasal peptide drug delivery with morphological changes in nasal epithelial cells. J Pharm Sci [Internet]. 2004 [cited 2021 Oct 13];93(9):2205–13. Available from: http://www.jpharmsci.org/article/S0022354916315933/fulltext.

  87. Maggio ET, Pillion DJ. High efficiency intranasal drug delivery using Intravail® alkylsaccharide absorption enhancers. Drug Deliv Transl Res [Internet]. 2013 [cited 2021 Oct 13];3(1):16–25. Available from: https://pubmed.ncbi.nlm.nih.gov/25787864/.

  88. Ahsan F, Arnold J, Meezan E, Pillion DJ. Enhanced bioavailability of calcitonin formulated with alkylglycosides following nasal and ocular administration in rats. Pharm Res [Internet]. 2001 [cited 2021 Oct 13];18(12):1742–6. Available from: https://pubmed.ncbi.nlm.nih.gov/11785695/.

  89. Vllasaliu D, Shubber S, Fowler R, Garnett M, Alexander C, Stolnik S. Epithelial toxicity of alkylglycoside surfactants. J Pharm Sci [Internet]. 2013 [cited 2021 Oct 13];102(1):114–25. Available from: https://pubmed.ncbi.nlm.nih.gov/23108603/.

  90. Cortés H, Hernández-Parra H, Bernal-Chávez SA, Del Prado-Audelo ML, Caballero-Florán IH, Borbolla-Jiménez FV, et al. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials, 2021;14

    Google Scholar 

  91. Salama HA, Mahmoud AA, Kamel AO, Abdel Hady M, Awad GAS. Phospholipid based colloidal poloxamer-nanocubic vesicles for brain targeting via the nasal route. Colloids Surfaces B Biointerfaces [Internet]. 2012 [cited 2021 Oct 12];100:146–54. Available from: https://pubmed.ncbi.nlm.nih.gov/22766291/.

  92. Ahsan F, Arnold JJ, Meezan E, Pillion DJ. Sucrose cocoate, a component of cosmetic preparations, enhances nasal and ocular peptide absorption. Int J Pharm [Internet]. 2003 Jan 30 [cited 2021 Oct 12];251(1–2):195–203. Available from: https://pubmed.ncbi.nlm.nih.gov/12527189/.

  93. Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res [Internet]. 2004 [cited 2021 Oct 13];21(2):201–30. Available from: https://pubmed.ncbi.nlm.nih.gov/15032302/.

  94. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D. Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. J Biosci Bioeng. 2008 May;105(5):493–502.

    Google Scholar 

  95. Płaza G, Achal V. Biosurfactants: eco-friendly and innovative biocides against biocorrosion. Int J Mol Sci [Internet]. 2020 [cited 2021 Oct 20];21(6). Available from: /pmc/articles/PMC7139319/.

    Google Scholar 

  96. Bjerk TR, Severino P, Jain S, Marques C, Silva AM, Pashirova T, et al. Biosurfactants: properties and applications in drug delivery, biotechnology and ecotoxicology. Bioengineering [Internet]. 2021 Aug 13 [cited 2021 Oct 20];8(8):115. Available from: https://www.mdpi.com/2306-5354/8/8/115/htm.

  97. Perinelli DR, Vllasaliu D, Bonacucina G, Come B, Pucciarelli S, Ricciutelli M, et al. Rhamnolipids as epithelial permeability enhancers for macromolecular therapeutics. Eur J Pharm Biopharm [Internet]. 2017 [cited 2021 Oct 20];119:419–25. Available from: https://pubmed.ncbi.nlm.nih.gov/28743594/.

  98. Basabe-Burgos O, Zebialowicz J, Stichtenoth G, Curstedt T, Bergman P, Johansson J, et al. Natural derived surfactant preparation as a carrier of Polymyxin e for treatment of pseudomonas aeruginosa pneumonia in a near-term rabbit model. J Aerosol Med Pulm Drug Deliv [Internet]. 2019 [cited 2021 Oct 20];32(2):110–8. Available from: https://www.liebertpub.com/doi/abs/10.1089/jamp.2018.1468.

  99. Ghodrat M. Lung surfactants. Am J Heal Pharm [Internet]. 2006 [cited 2021 Oct 25];63(16):1504–21. Available from: https://academic.oup.com/ajhp/article/63/16/1504/5135560.

  100. Sarkar MA. Drug metabolism in the nasal mucosa. Pharm Res An Off J Am Assoc Pharm Sci [Internet]. 1992 [cited 2021 Oct 21];9(1):1–9. Available from: https://pubmed.ncbi.nlm.nih.gov/1589391/.

  101. Oliveira P, Fortuna A, Alves G, Falcao A. Drug-metabolizing enzymes and efflux transporters in nasal epithelium: influence on the bioavailability of intranasally administered drugs. Curr Drug Metab. 2016;17(7):628–47.

    Article  CAS  PubMed  Google Scholar 

  102. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol [Internet]. 2003 [cited 2021 Oct 21];56(6):588–99. Available from: /pmc/articles/PMC1884307/.

    Google Scholar 

  103. Morimoto K, Yamaguchi H, Iwakura Y, Miyazaki M, Nakatani E, Iwamoto T, et al. Effects of proteolytic enzyme inhibitors on the nasal absorption of vasopressin and an analogue. Pharm Res An Off J Am Assoc Pharm Sci [Internet]. 1991 [cited 2021 Oct 21];8(9):1175–9. Available from: https://pubmed.ncbi.nlm.nih.gov/1724082/.

  104. Morimoto K, Yamaguchi H, Iwakura Y, Morisaka K, Ohashi Y, Nakai Y. Effects of viscous hyaluronate–sodium solutions on the nasal absorption of vasopressin and an analogue. Pharm Res An Off J Am Assoc Pharm Sci. 1991;8(4):471–4.

    CAS  Google Scholar 

  105. Yamamoto A, Umemori S, Muranishi S. Absorption enhancement of intrapulmonary administered insulin by various absorption enhancers and protease inhibitors in rats. J Pharm Pharmacol [Internet]. 1994 [cited 2021 Oct 21];46(1):14–8. Available from: https://pubmed.ncbi.nlm.nih.gov/7515417/.

  106. Dittrich AS, Kühbandner I, Gehrig S, Rickert-Zacharias V, Twigg M, Wege S, et al. Elastase activity on sputum neutrophils correlates with severity of lung disease in cystic fibrosis. Eur Respir J [Internet]. 2018 [cited 2021 Oct 22];51(3). Available from: https://erj.ersjournals.com/content/51/3/1701910.

  107. Demkow U, Van Overveld FJ. Role of elastases in the pathogenesis of chronic obstructive pulmonary disease: implications for treatment. Eur J Med Res [Internet]. 2010 Nov 4 [cited 2021 Oct 22];15(2):27–35. Available from: /pmc/articles/PMC4360323/.

    Google Scholar 

  108. Delacourt C, Hérigault S, Delclaux C, Poncin A, Levame M, Harf A, et al. Protection against acute lung injury by intravenous or intratracheal pretreatment with EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am J Respir Cell Mol Biol [Internet]. 2002 [cited 2021 Oct 22];26(3):290–7. Available from: https://pubmed.ncbi.nlm.nih.gov/11867337/.

  109. Pan Y, Xia Q, Xiao H. Cationic polymers with tailored structures for rendering polysaccharide-based materials antimicrobial: an overview. Polymers (Basel) [Internet]. 2019 Aug 1 [cited 2021 Oct 22];11(8):1283. Available from: https://www.mdpi.com/2073-4360/11/8/1283/htm.

  110. Farshbaf M, Davaran S, Zarebkohan A, Annabi N, Akbarzadeh A, Salehi R. Significant role of cationic polymers in drug delivery systems. Artif Cells, Nanomedicine Biotechnol [Internet]. 2018 [cited 2021 Oct 22];46(8):1872–91. Available from: https://www.tandfonline.com/doi/abs/10.1080/21691401.2017.1395344.

  111. M. A. Oral delivery of insulin: novel approaches. Recent Adv Nov Drug Carr Syst [Internet]. 2012 [cited 2021 Oct 22]. Available from: https://www.intechopen.com/chapters/40267.

  112. Fargion S, Dongiovanni P, Guzzo A, Colombo S, Valenti L, Fracanzani AL. Iron and insulin resistance. Aliment Pharmacol Ther Suppl [Internet]. 2005 [cited 2021 Oct 22];22(2):61–3. Available from: /pmc/articles/PMC1204764/.

    Google Scholar 

  113. Kichler A, Chillon M, Leborgne C, Danos O, Frisch B. Intranasal gene delivery with a polyethylenimine-PEG conjugate. J Control Release. 2002;81(3):379–88.

    Article  CAS  PubMed  Google Scholar 

  114. Dong Z, Hamid KA, Gao Y, Lin Y, Katsumi H, Sakane T, et al. Polyamidoamine dendrimers can improve the pulmonary absorption of insulin and calcitonin in rats. J Pharm Sci [Internet]. 2011 May 1 [cited 2021 Oct 22];100(5):1866–78. Available from: http://jpharmsci.org/article/S002235491532178X/fulltext.

  115. Morimoto K, Fukushi N, Chono S, Seki T, Tabata Y. Spermined dextran, a cationized polymer, as absorption enhancer for pulmonary application of peptide drugs. Pharmazie. 2008;63(3):180–4.

    CAS  PubMed  Google Scholar 

  116. Seki T, Hamada A, Egawa Y, Yamaki T, Uchida M, Natsume H, et al. Evaluation of the effects of absorption enhancers on Caco-2 cell monolayers by using a pore permeation model involving two different sizes. Biol Pharm Bull. 2013;36(11):1862–6.

    Article  CAS  PubMed  Google Scholar 

  117. Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, et al. Cationic polymers and their therapeutic potential. Chem Soc Rev [Internet]. 2012 [cited 2021 Oct 22];41(21):7147–94. Available from: https://pubs.rsc.org/en/content/articlehtml/2012/cs/c2cs35094g.

  118. Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers (Basel) [Internet]. 2018 [cited 2021 Oct 22];10(4). Available from: /pmc/articles/PMC6415442/.

    Google Scholar 

  119. Collado-González M, Espinosa YG, Goycoolea FM. Interaction between chitosan and mucin: fundamentals and applications. Biomimetics [Internet]. 2019 [cited 2021 Oct 22];4(2). Available from: /pmc/articles/PMC6631199/.

    Google Scholar 

  120. Ways TMM, Lau WM, Khutoryanskiy VV. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers (Basel) [Internet]. 2018 [cited 2021 Oct 22];10(3). Available from: /pmc/articles/PMC6414903/.

    Google Scholar 

  121. Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs [Internet]. 2015 [cited 2021 Oct 22];13(8):5156–86. Available from: /pmc/articles/PMC4557018/.

    Google Scholar 

  122. Domínguez-Delgado CL, Rodríguez-Cruz IM, Fuentes-Prado E, Escobar-Chávez JJ, Vidal-Romero G, García-González L, et al. Drug carrier systems using chitosan for non parenteral routes. Pharmacol Ther [Internet]. 2014 [cited 2021 Oct 22]; Available from: https://www.intechopen.com/chapters/46134.

  123. Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR. Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci Rep [Internet]. 2018 [cited 2021 Oct 22];8(1). Available from: /pmc/articles/PMC5856823/.

    Google Scholar 

  124. Shaikh R, Raj Singh T, Garland M, Woolfson A, Donnelly R. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci [Internet]. 2011 Jan [cited 2021 Oct 22];3(1):89–100. Available from: /pmc/articles/PMC3053525/.

    Google Scholar 

  125. Seki T, Fukushi N, Chono S, Morimoto K. Effects of sperminated polymers on the pulmonary absorption of insulin. J Control Release. 2008;125(3):246–51.

    Article  CAS  PubMed  Google Scholar 

  126. Morimoto K, Katsumata H, Yabuta T, Iwanaga K, Kakemi M, Tabata Y, et al. Gelatin microspheres as a pulmonary delivery system: evaluation of Salmon Calcitonin absorption. J Pharm Pharmacol [Internet]. 2010 [cited 2021 Oct 22];52(6):611–7. Available from: https://pubmed.ncbi.nlm.nih.gov/10875536/.

  127. Miyake M, Minami T, Hirota M, Toguchi H, Odomi M, Ogawara KI, et al. Novel oral formulation safely improving intestinal absorption of poorly absorbable drugs: utilization of polyamines and bile acids. J Control Release [Internet]. 2006 [cited 2021 Oct 22];111(1–2):27–34. Available from: https://pubmed.ncbi.nlm.nih.gov/16410031/.

  128. Bekebrede AF, Keijer J, Gerrits WJJ, de Boer VCJ. The molecular and physiological effects of protein-derived polyamines in the intestine. Nutrients [Internet]. 2020 [cited 2021 Oct 22];12(1). Available from: /pmc/articles/PMC7020012/.

    Google Scholar 

  129. He L, Gao Y, Lin Y, Katsumi H, Fujita T, Yamamoto A. Improvement of pulmonary absorption of insulin and other water-soluble compounds by polyamines in rats. J Control Release [Internet]. 2007 [cited 2021 Oct 22];122(1):94–101. Available from: https://pubmed.ncbi.nlm.nih.gov/17651854/.

  130. Gao Y, He L, Katsumi H, Sakane T, Fujita T, Yamamoto A. Improvement of intestinal absorption of water-soluble macromolecules by various polyamines: intestinal mucosal toxicity and absorption-enhancing mechanism of spermine. Int J Pharm. 2008;354(1–2):126–34.

    Article  CAS  PubMed  Google Scholar 

  131. Zheng J, Zheng Y, Chen J, Fang F, He J, Li N, et al. Enhanced pulmonary absorption of recombinant human insulin by pulmonary surfactant and phospholipid hexadecanol tyloxapol through Calu-3 monolayers. Pharmazie. 2012;67(5):448–51.

    CAS  PubMed  Google Scholar 

  132. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Cell junctions. 2002 [cited 2021 Oct 20]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK26857/.

  133. Laksitorini M, Prasasty VD, Kiptoo PK, Siahaan TJ. Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers. Ther Deliv [Internet]. 2014 [cited 2021 Oct 22];5(10):1143. Available from: /pmc/articles/PMC4445828/.

    Google Scholar 

  134. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des [Internet]. 2013 [cited 2021 Oct 22];81(1):136–47. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/cbdd.12055.

  135. Karsdal MA, Riis BJ, Mehta N, Stern W, Arbit E, Christiansen C, et al. Lessons learned from the clinical development of oral peptides. Br J Clin Pharmacol [Internet]. 2015 [cited 2021 Oct 22];79(5):720–32. Available from: /pmc/articles/PMC4415709/.

    Google Scholar 

  136. Thanou M, Verhoef JC, Verheijden JHM, Junginger HE. Intestinal absorption of octreotide using trimethyl chitosan chloride: studies in pigs. Pharm Res. 2001;18(6):823–8.

    Article  CAS  PubMed  Google Scholar 

  137. Günzel D, Yu ASL. Claudins and the modulation of tight junction permeability. Physiol Rev [Internet]. 2013 [cited 2021 Oct 20];93(2):525–69. Available from: /pmc/articles/PMC3768107/.

    Google Scholar 

  138. Morales JO, Peters JI, Williams RO. Surfactants: their critical role in enhancing drug delivery to the lungs. Ther Deliv. 2011;2:623–41.

    Google Scholar 

  139. Reno FE, Normand P, McInally K, Silo S, Stotland P, Triest M, et al. A novel nasal powder formulation of glucagon: toxicology studies in animal models. BMC Pharmacol Toxicol [Internet]. 2015;16(1):29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26502880.

  140. Li Y, Li J, Zhang X, Ding J, Mao S. Non-ionic surfactants as novel intranasal absorption enhancers: in vitro and in vivo characterization. Drug Deliv [Internet]. 2016 [cited 2021 Oct 13];23(7):2272–9. Available from: https://www.tandfonline.com/doi/abs/10.3109/10717544.2014.971196.

  141. Lemmer HJ, Hamman JH. Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv [Internet]. 2013 [cited 2021 Oct 11];10(1):103–14. Available from: https://pubmed.ncbi.nlm.nih.gov/23163247/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Kwabena Amponsah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amponsah, S.K., Adams, I. (2023). Drug Absorption via the Nasal Route: Opportunities and Challenges. In: Pathak, Y.V., Yadav, H.K.S. (eds) Nasal Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-031-23112-4_3

Download citation

Publish with us

Policies and ethics