Skip to main content

Abstract

All patients with septic shock should be given the fundamental pillars of sepsis management (source control, antibiotic stewardship, initial hemodynamic resuscitation, and multi-organ support). Patients with this disorder are contenders to receive a well-defined and protocolized treatment based on guidelines and local protocols. However, sepsis is a varied disease with various clinical courses and different clinical phenotypes. There are specific subgroups of patients who may benefit from a personalized approach with actions targeted towards specific physiopathological mechanisms. In addition, there are a series of patients with septic shock who are refractory to conventional treatment and so still have a higher mortality rate. Herein, we will assess the framework for identifying subpopulations of patients with sepsis and septic shock who may benefit from specific therapies and also potential therapies for patients in refractory shock. Some of these therapies are still in the early stages of research, while others are already available in daily clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47:1181–247.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Levy MM, Rhodes A, Phillips GS, et al. Surviving sepsis campaign: association between performance metrics and outcomes in a 7.5-year study. Crit Care Med. 2015;43:3–12.

    Article  PubMed  Google Scholar 

  3. Yébenes JC, Ruiz-Rodriguez JC, Ferrer R, et al. Epidemiology of sepsis in Catalonia: analysis of incidence and outcomes in a European setting. Ann Intensive Care. 2017;7:19.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321:2003–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruiz-Rodriguez JC, Plata-Menchaca EP, Chiscano-Camón L, et al. Precision medicine in sepsis and septic shock: from omics to clinical tools. World J Crit Care Med. 2022;11:1–21.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leligdowicz A, Matthay MA. Heterogeneity in sepsis: new biological evidence with clinical applications. Crit Care. 2019;23:80.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wong HR, Cvijanovich NZ, Allen GL, et al. Validation of a gene expression-based subclassification strategy for pediatric septic shock. Crit Care Med. 2011;39:2511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferrario M, Cambiaghi A, Brunelli L, et al. Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach. Sci Rep. 2016;6:20391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Punyadeera C, Schneider EM, Schaffer D, et al. A biomarker panel to discriminate between systemic inflammatory response syndrome and sepsis and sepsis severity. J Emerg Trauma Shock. 2010;3:26–35.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bauzá-Martinez J, Aletti F, Pinto BB, et al. Proteolysis in septic shock patients: plasma peptidomic patterns are associated with mortality. Br J Anaesth. 2018;121:1065–74.

    Article  PubMed  Google Scholar 

  12. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.

    Article  CAS  PubMed  Google Scholar 

  13. Alejandria MM, Lansang MA, Dans LF, Mantaring JB III. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev. 2013;2013:Cd001090.

    PubMed  PubMed Central  Google Scholar 

  14. Bermejo-Martín JF, Rodriguez-Fernandez A, Herrán-Monge R, et al. Immunoglobulins IgG1, IgM and IgA: a synergistic team influencing survival in sepsis. J Intern Med. 2014;276:404–12.

    Article  PubMed  Google Scholar 

  15. Taccone FS, Stordeur P, De Backer D, Creteur J, Vincent JL. Gamma-globulin levels in patients with community-acquired septic shock. Shock. 2009;32:379–85.

    Article  CAS  PubMed  Google Scholar 

  16. Andaluz-Ojeda D, Iglesias V, Bobillo F, et al. Early natural killer cell counts in blood predict mortality in severe sepsis. Crit Care. 2011;15:R243.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tian L, Zhu J, Jin J, et al. Prognostic value of circulating lymphocyte B and plasma immunoglobulin M on septic shock and sepsis: a systematic review and meta-analysis. Am J Transl Res. 2019;11:7223–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Krautz C, Maier SL, Brunner M, et al. Reduced circulating B cells and plasma IgM levels are associated with decreased survival in sepsis - a meta-analysis. J Crit Care. 2018;45:71–5.

    Article  CAS  PubMed  Google Scholar 

  19. Busani S, Damiani E, Cavazzuti I, Donati A, Girardis M. Intravenous immunoglobulin in septic shock: review of the mechanisms of action and meta-analysis of the clinical effectiveness. Minerva Anestesiol. 2016;82:559–72.

    PubMed  Google Scholar 

  20. Nierhaus A, Berlot G, Kindgen-Milles D, Müller E, Girardis M. Best-practice IgM- and IgA-enriched immunoglobulin use in patients with sepsis. Ann Intensive Care. 2020;10:132.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cui J, Wei X, Lv H, et al. The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: a meta-analysis with trial sequential analysis. Ann Intensive Care. 2019;9:27.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Olivares MM, Olmos CE, Álvarez MI, et al. Colombian guidelines of clinical practice for the use of immunoglobulins in the treatment of replacement and immunomodulation. Rev Alerg Mex. 2017;64(Suppl 2):s5–s65.

    PubMed  Google Scholar 

  23. Welte T, Dellinger RP, Ebelt H, et al. Efficacy and safety of trimodulin, a novel polyclonal antibody preparation, in patients with severe community acquired pneumonia: a randomized, placebo-controlled, double-blind, multicenter, phase II trial (CIGMA study). Intensive Care Med. 2018;44:438–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ankawi G, Neri M, Zhang J, Breglia A, Ricci Z, Ronco C. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. Crit Care. 2018;22:262.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ronco C. Endotoxin removal: history of a mission. Blood Purif. 2014;37(Suppl 1):5–8.

    Article  CAS  PubMed  Google Scholar 

  26. Marshall JC, Foster D, Vincent JL, et al. Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study. J Infect Dis. 2004;190:527–34.

    Article  CAS  PubMed  Google Scholar 

  27. Bottiroli M, Monti G, Pinciroli R, et al. Prevalence and clinical significance of early high endotoxin activity in septic shock: an observational study. J Crit Care. 2017;41:124–9.

    Article  CAS  PubMed  Google Scholar 

  28. Romaschin AD, Harris DM, Ribeiro MB, Paice J, Foster DM, Walker PM, Marshall JC. A rapid assay of endotoxin in whole blood using autologous neutrophil dependent chemiluminescence. J Immunol Methods. 1998;212:169–85.

    Article  CAS  PubMed  Google Scholar 

  29. Vincent JL, Laterre PF, Cohen J, et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock. 2005;23:400–5.

    Article  CAS  PubMed  Google Scholar 

  30. Cruz DN, Antonelli M, Fumagalli R, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA. 2009;301:2445–52.

    Article  CAS  PubMed  Google Scholar 

  31. Payen DM, Guilhot J, Launey Y, et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med. 2015;41:975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shoji H, Ferrer R. Potential survival benefit and early recovery from organ dysfunction with polymyxin B hemoperfusion: perspectives from a real-world big data analysis and the supporting mechanisms of action. J Anesth Analg Crit Care. 2022;2:27.

    Article  Google Scholar 

  33. Dellinger RP, Bagshaw SM, Antonelli M, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: the EUPHRATES randomized clinical trial. JAMA. 2018;320(14):1455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klein DJ, Foster D, Walker PM, Bagshaw SM, Mekonnen H, Antonelli M. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018;44:2205–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Monti G, Terzi V, Calini A, et al. Rescue therapy with polymyxin B hemoperfusion in high-dose vasopressor therapy refractory septic shock. Minerva Anestesiol. 2015;81:516–25.

    CAS  PubMed  Google Scholar 

  36. Iba T, Klein DJ. The wind changed direction and the big river still flows: from EUPHRATES to TIGRIS. J Intensive Care. 2019;7:31.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–91.

    Article  CAS  PubMed  Google Scholar 

  38. Kellum JA, Kong L, Fink MP, et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) study. Arch Intern Med. 2007;167:1655–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bozza FA, Salluh JI, Japiassu AM, et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care. 2007;11:R49.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jekarl DW, Lee SY, Lee J, et al. Procalcitonin as a diagnostic marker and IL-6 as a prognostic marker for sepsis. Diagn Microbiol Infect Dis. 2013;75:342–7.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar AT, Sudhir U, Punith K, Kumar R, Ravi Kumar VN, Rao MY. Cytokine profile in elderly patients with sepsis. Indian J Crit Care Med. 2009;13:74–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gogos CA, Drosou E, Bassaris HP, Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis. 2000;181:176–80.

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27:669–84.

    CAS  PubMed  Google Scholar 

  44. Friesecke S, Stecher SS, Gross S, Felix SB, Nierhaus A. Extracorporeal cytokine elimination as rescue therapy in refractory septic shock: a prospective single-center study. J Artif Organs. 2017;20:252–9.

    Article  CAS  PubMed  Google Scholar 

  45. Paul R, Sathe P, Kumar S, Prasad S, Aleem M, Sakhalvalkar P. Multicentered prospective investigator initiated study to evaluate the clinical outcomes with extracorporeal cytokine adsorption device (CytoSorb(®)) in patients with sepsis and septic shock. World J Crit Care Med. 2021;10:22–34.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brouwer WP, Duran S, Kuijper M, Ince C. Hemoadsorption with CytoSorb shows a decreased observed versus expected 28-day all-cause mortality in ICU patients with septic shock: a propensity-score-weighted retrospective study. Crit Care. 2019;23:317.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hawchar F, László I, Öveges N, Trásy D, Ondrik Z, Molnar Z. Extracorporeal cytokine adsorption in septic shock: a proof of concept randomized, controlled pilot study. J Crit Care. 2019;49:172–8.

    Article  CAS  PubMed  Google Scholar 

  48. Rugg C, Klose R, Hornung R, et al. Hemoadsorption with CytoSorb in septic shock reduces catecholamine requirements and in-hospital mortality: a single-center retrospective ‘genetic’ matched analysis. Biomedicine. 2020;8:539.

    CAS  Google Scholar 

  49. Malard B, Lambert C, Kellum JA. In vitro comparison of the adsorption of inflammatory mediators by blood purification devices. Intensive Care Med Exp. 2018;6:12.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39:517–28.

    Article  CAS  PubMed  Google Scholar 

  51. Ruiz-Rodríguez JC, Chiscano-Camón L, Palmada C, et al. Endotoxin and cytokine sequential hemoadsorption in septic shock and multi-organ failure. Blood Purif. 2022;51:630–3.

    Article  PubMed  Google Scholar 

  52. Ruiz-Rodríguez JC, Chiscano-Camón L, Ruiz-Sanmartin A, et al. Cytokine hemoadsorption as rescue therapy for critically ill patients with SARS-CoV-2 pneumonia with severe respiratory failure and hypercytokinemia. Front Med (Lausanne). 2022;8:779038.

    Article  PubMed  Google Scholar 

  53. Yaroustovsky M, Abramyan M, Krotenko N, Popov D, Plyushch M, Rogalskaya E. A pilot study of selective lipopolysaccharide adsorption and coupled plasma filtration and adsorption in adult patients with severe sepsis. Blood Purif. 2015;39:210–7.

    Article  CAS  PubMed  Google Scholar 

  54. Nandhabalan P, Ioannou N, Meadows C, Wyncoll D. Refractory septic shock: our pragmatic approach. Crit Care. 2018;22:215.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Landry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95:1122–5.

    Article  CAS  PubMed  Google Scholar 

  56. Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96:576–82.

    Article  CAS  PubMed  Google Scholar 

  57. Holmes CL, Walley KR, Chittock DR, Lehman T, Russell JA. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med. 2001;27:1416–21.

    Article  CAS  PubMed  Google Scholar 

  58. Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.

    Article  CAS  PubMed  Google Scholar 

  59. Gordon AC, Mason AJ, Thirunavukkarasu N, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316:509–18.

    Article  CAS  PubMed  Google Scholar 

  60. Nagendran M, Russell JA, Walley KR, et al. Vasopressin in septic shock: an individual patient data meta-analysis of randomised controlled trials. Intensive Care Med. 2019;45:844–55.

    Article  CAS  PubMed  Google Scholar 

  61. Der-Nigoghossian C, Hammond DA, Ammar MA. Narrative review of controversies involving vasopressin use in septic shock and practical considerations. Ann Pharmacother. 2020;54:706–14.

    Article  PubMed  Google Scholar 

  62. Guerci P, Belveyre T, Mongardon N, Novy E. When to start vasopressin in septic shock: the strategy we propose. Crit Care. 2022;26:125.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Antonucci E, Giovini M, Agosta S, Sakr Y, Leone M. Selepressin in septic shock. Shock. 2022;57:172–9.

    Article  PubMed  Google Scholar 

  64. Russell JA, Vincent JL, Kjølbye AL, et al. Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Crit Care. 2017;21:213.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Laterre PF, Berry SM, Blemings A, et al. Effect of selepressin vs placebo on ventilator- and vasopressor-free days in patients with septic shock: the SEPSIS-ACT randomized clinical trial. JAMA. 2019;322:1476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhu Y, Huang H, Xi X, Du B. Terlipressin for septic shock patients: a meta-analysis of randomized controlled study. J Intensive Care. 2019;7:16.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Porizka M, Kopecky P, Dvorakova H, et al. Methylene blue administration in patients with refractory distributive shock – a retrospective study. Sci Rep. 2020;10:1828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sari-Yavuz S, Heck-Swain K, Keller M, et al. Methylene blue dosing strategies in critically ill adults with shock – a retrospective cohort study. Res Square. 2022. https://doi.org/10.21203/rs.3.rs-1752415/v1.

  69. Paciullo CA, McMahon Horner D, Hatton KW, Flynn JD. Methylene blue for the treatment of septic shock. Pharmacotherapy. 2010;30:702–15.

    Article  CAS  PubMed  Google Scholar 

  70. Khanna A, English SW, Wang XS, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;377:419–30.

    Article  CAS  PubMed  Google Scholar 

  71. Bellomo R, Forni LG, Busse LW, et al. Renin and survival in patients given angiotensin ii for catecholamine-resistant vasodilatory shock. A clinical trial. Am J Respir Crit Care Med. 2020;202:1253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Burke-Gaffney A, Evans TW. Lest we forget the endothelial glycocalyx in sepsis. Crit Care. 2012;16:121.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

    Article  CAS  PubMed  Google Scholar 

  74. Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin c, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017;151:1229–38.

    Article  PubMed  Google Scholar 

  75. Stoppe C, Lee ZY, Ortiz L, Heyland DK, Patel JJ. The potential role of intravenous vitamin C monotherapy in critical illness. JPEN J Parenter Enteral Nutr. 2022;46:972–6.

    Article  CAS  PubMed  Google Scholar 

  76. Assouline B, Faivre A, Verissimo T, et al. Thiamine, ascorbic acid, and hydrocortisone as a metabolic resuscitation cocktail in sepsis: a meta-analysis of randomized controlled trials with trial sequential analysis. Crit Care Med. 2021;49:2112–20.

    CAS  PubMed  Google Scholar 

  77. Lamontagne F, Masse MH, Menard J, et al; LOVIT Investigators and the Canadian Critical Care Trials Group. Intravenous vitamin C in adults with sepsis in the intensive care unit. N Engl J Med. 2022;386:2387–98.

    Google Scholar 

  78. Marik PE. Hydrocortisone, ascorbic acid and thiamine (HAT therapy) for the treatment of sepsis. Focus on ascorbic acid. Nutrients. 2018;10:1762.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stoppe C, Preiser JC, de Backer D, Elke G. Intravenous vitamin C in adults with sepsis in the intensive care unit: still LOV’IT? Crit Care. 2022;26:230.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Brouwer M, Chamulitrat W, Ferruzzi G, Sauls DL, Weinberg JB. Nitric oxide interactions with cobalamins: biochemical and functional consequences. Blood. 1996;88:1857–64.

    Article  CAS  PubMed  Google Scholar 

  81. Shah PR, Reynolds PS, Pal N, Tang D, McCarthy H, Spiess BD. Hydroxocobalamin for the treatment of cardiac surgery-associated vasoplegia: a case series. Can J Anaesth. 2018;65:560–8.

    Article  PubMed  Google Scholar 

  82. Armour S, Armour TK, Joppa WR, Maltais S, Nelson JA, Wittwer E. Use of hydroxocobalamin (vitamin B12a) in patients with vasopressor refractory hypotension after cardiopulmonary bypass: a case series. Anesth Analg. 2019;129:e1–4.

    Article  CAS  PubMed  Google Scholar 

  83. Ritter LA, Maldarelli M, McCurdy MT, et al. Effects of a single bolus of hydroxocobalamin on hemodynamics in vasodilatory shock. J Crit Care. 2022;67:66–71.

    Article  CAS  PubMed  Google Scholar 

  84. Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol. 2000;164:4991–5.

    Article  CAS  PubMed  Google Scholar 

  85. Lanier LL, Bakker AB. The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol Today. 2000;21:611–4.

    Article  CAS  PubMed  Google Scholar 

  86. Derive M, Boufenzer A, Bouazza Y, et al. Effects of a TREM-like transcript 1-derived peptide during hypodynamic septic shock in pigs. Shock. 2013;39:176–82.

    Article  CAS  PubMed  Google Scholar 

  87. Derive M, Bouazza Y, Sennoun N, et al. Soluble TREM-like transcript-1 regulates leukocyte activation and controls microbial sepsis. J Immunol. 2012;188:5585–92.

    Article  CAS  PubMed  Google Scholar 

  88. François B, Wittebole X, Ferrer R, et al. Nangibotide in patients with septic shock: a phase 2a randomized controlled clinical trial. Intensive Care Med. 2022;46:1425–37.

    Article  Google Scholar 

  89. Francois B, Lambden S, Gibot S, et al. Rationale and protocol for the efficacy, safety and tolerability of nangibotide in patients with septic shock (ASTONISH) phase IIb randomised controlled trial. BMJ Open. 2021;11:e042921.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Koyama I, Matsunaga T, Harada T, Hokari S, Komoda T. Alkaline phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through dephosphorylation. Clin Biochem. 2002;35:455–61.

    Article  CAS  PubMed  Google Scholar 

  91. Bentala H, Verweij WR, Huizinga-Van der Vlag A, van Loenen-Weemaes AM, Meijer DK, Poelstra K. Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide. Shock. 2002;18:561–6.

    Article  PubMed  Google Scholar 

  92. Wy CA, Goto M, Young RI, Myers TF, Muraskas J. Prophylactic treatment of endotoxic shock with monophosphoryl lipid A in newborn rats. Biol Neonate. 2000;77:191–5.

    Article  CAS  PubMed  Google Scholar 

  93. Su F, Brands R, Wang Z, et al. Beneficial effects of alkaline phosphatase in septic shock. Crit Care Med. 2006;34:2182–7.

    Article  CAS  PubMed  Google Scholar 

  94. Pickkers P, Mehta RL, Murray PT, et al. Effect of human recombinant alkaline phosphatase on 7-day creatinine clearance in patients with sepsis-associated acute kidney injury: a randomized clinical trial. JAMA. 2018;320:1998–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Poyner DR, Sexton PM, Marshall I, et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54:233–46.

    Article  CAS  PubMed  Google Scholar 

  96. Geven C, Kox M, Pickkers P. Adrenomedullin and adrenomedullin-targeted therapy as treatment strategies relevant for sepsis. Front Immunol. 2018;9:292.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Marino R, Struck J, Maisel AS, et al. Plasma adrenomedullin is associated with short-term mortality and vasopressor requirement in patients admitted with sepsis. Crit Care. 2014;18:R34.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Caironi P, Latini R, Struck J, et al. Circulating biologically active adrenomedullin (bio-ADM) predicts hemodynamic support requirement and mortality during sepsis. Chest. 2017;152:312–20.

    Article  PubMed  Google Scholar 

  99. Geven C, Pickkers P. The mechanism of action of the adrenomedullin-binding antibody adrecizumab. Crit Care. 2018;22:159.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Thiele C, Simon TP, Szymanski J, et al. Effects of the non-neutralizing humanized monoclonal anti-adrenomedullin antibody adrecizumab on hemodynamic and renal injury in a porcine two-hit model. Shock. 2020;54:810–8.

    Article  CAS  PubMed  Google Scholar 

  101. Laterre PF, Pickkers P, Marx G, et al. Safety and tolerability of non-neutralizing adrenomedullin antibody adrecizumab (HAM8101) in septic shock patients: the AdrenOSS-2 phase 2a biomarker-guided trial. Intensive Care Med. 2021;47:1284–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ren Y, Xie Y, Jiang G, Fan J, Yeung J, Li W, Tam PK, Savill J. Apoptotic cells protect mice against lipopolysaccharide-induced shock. J Immunol. 2008;180:4978–85.

    Article  CAS  PubMed  Google Scholar 

  103. van Heerden PV, Abutbul A, Sviri S, et al. Apoptotic cells for therapeutic use in cytokine storm associated with sepsis- a phase Ib clinical trial. Front Immunol. 2021;12:718191.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ferrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiscano-Camón, L., Ruiz-Rodriguez, J.C., Ferrer, R. (2023). Precision Medicine in Septic Shock. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2023. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-23005-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23005-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23004-2

  • Online ISBN: 978-3-031-23005-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics