Skip to main content
  • 1164 Accesses

Abstract

The definition of the clinical syndrome “sepsis” is subject to continuous development. Despite an impressive increase in our understanding of origin, pathophysiology and immunology of sepsis, our ability to positively influence the course of the disease remains limited.Today, Sepsis is defined as “life-threatening organ dysfunction caused by a dysregulated host response to infection”, whereby the immunological aspect is highlighted [1].

Even though mortality rates are declining, up to 25% of patients still die of sepsis today. In septic shock, hospital mortality rate approaches 60%. However, if one examines the available therapeutic options applying the rules of evidence-based medicine only timely fluid resuscitation and the early administration of broad-spectrum antibiotics demonstrably lower mortality.

The time of the correct diagnosis and the initiation of the causal, supportive and adjunctive measures is a decisive factor determining subsequent lethality (Levy Crit Care Med 43:3–12, 2015). This implies that boosting awareness for sepsis and quality improvement initiatives in the field of sepsis therapy may increase patient survival. Further, the continuous development of novel medical, immunomodulatory as well as diagnostic or technical methods will most certainly advance sepsis treatment, which will be addressed in the following paragraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.survivingsepsis.org/Bundles/Pages/default.aspx.

References

  1. Singer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levy MM, et al. Surviving Sepsis Campaign: association between performance metrics and outcomes in a 7.5-year study. Crit Care Med. 2015;43(1):3–12.

    Article  PubMed  Google Scholar 

  3. Marik PE, et al. POINT: should the surviving sepsis campaign guidelines be retired? Yes. Chest. 2019;155(1):12–4.

    Article  PubMed  Google Scholar 

  4. Levy MM, et al. COUNTERPOINT: should the surviving sepsis campaign guidelines be retired? No. Chest. 2019;155(1):14–7.

    Article  PubMed  Google Scholar 

  5. Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77.

    Article  PubMed  Google Scholar 

  6. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Intensive Care Med. 2018;44(6):925–8.

    Article  CAS  PubMed  Google Scholar 

  7. Bloos F, et al. Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: a prospective observational multi-center study. Crit Care. 2014;18(2):R42.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kumar A. Systematic bias in meta-analyses of time to antimicrobial in sepsis studies. Crit Care Med. 2016;44(4):e234–5.

    PubMed  Google Scholar 

  9. Rivers E, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    Article  CAS  PubMed  Google Scholar 

  10. Evans TW. Hemodynamic and metabolic therapy in critically ill patients. N Engl J Med. 2001;345(19):1417–8.

    Article  CAS  PubMed  Google Scholar 

  11. Guerin C, et al. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS Prone Position Network) study. Intensive Care Med. 2018;44(1):22–37.

    Article  CAS  PubMed  Google Scholar 

  12. Guerin C, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    Article  CAS  PubMed  Google Scholar 

  13. Sprung CL, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.

    Article  CAS  PubMed  Google Scholar 

  14. Venkatesh B, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378(9):797–808.

    Article  CAS  PubMed  Google Scholar 

  15. Annane D, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378(9):809–18.

    Article  CAS  PubMed  Google Scholar 

  16. Werdan K, et al. Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study. Crit Care Med. 2007;35(12):2693–701.

    Article  CAS  PubMed  Google Scholar 

  17. Kreymann KG, et al. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med. 2007;35(12):2677–85.

    CAS  PubMed  Google Scholar 

  18. Welte T, et al. Efficacy and safety of trimodulin, a novel polyclonal antibody preparation, in patients with severe community-acquired pneumonia: a randomized, placebo-controlled, double-blind, multicenter, phase II trial (CIGMA study). Intensive Care Med. 2018;44(4):438–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cui J, et al. The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: a meta-analysis with trial sequential analysis. Ann Intensive Care. 2019;9(1):27.

    Google Scholar 

  20. Iba T, Fowler L. Is polymyxin B-immobilized fiber column ineffective for septic shock? A discussion on the press release for EUPHRATES trial. J Intensive Care. 2017;5:40.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hotchkiss RS, et al. Sepsis and septic shock. Nat Rev Dis Primers. 2016;2:16045.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Honore PM, et al. New insights regarding rationale, therapeutic target and dose of hemofiltration and hybrid therapies in septic acute kidney injury. Blood Purif. 2012;33(1–3):44–51.

    Article  CAS  PubMed  Google Scholar 

  23. Villa G, et al. Nomenclature for renal replacement therapy and blood purification techniques in critically ill patients: practical applications. Crit Care. 2016;20(1):283.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang P, et al. Effect of the intensity of continuous renal replacement therapy in patients with sepsis and acute kidney injury: a single-center randomized clinical trial. Nephrol Dial Transplant. 2012;27(3):967–73.

    Article  CAS  PubMed  Google Scholar 

  25. Joannes-Boyau O, et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med. 2013;39(9):1535–46.

    Article  PubMed  Google Scholar 

  26. Network VNARFT, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20.

    Article  Google Scholar 

  27. Investigators RRTS, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361(17):1627–38.

    Article  Google Scholar 

  28. Clark E, et al. High-volume hemofiltration for septic acute kidney injury: a systematic review and meta-analysis. Crit Care. 2014;18(1):R7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Morgera S, et al. Renal replacement therapy with high-cutoff hemofilters: impact of convection and diffusion on cytokine clearances and protein status. Am J Kidney Dis. 2004;43(3):444–53.

    Article  CAS  PubMed  Google Scholar 

  30. Atari R, et al. High cut-off hemofiltration versus standard hemofiltration: effect on plasma cytokines. Int J Artif Organs. 2016;39(9):479–86.

    Article  CAS  Google Scholar 

  31. Azfar MF, et al. Prognostic value of ADAMTS13 in patients with severe sepsis and septic shock. Clin Invest Med. 2017;40(2):E49–58.

    Article  CAS  PubMed  Google Scholar 

  32. Rimmer E, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care. 2014;18(6):699.

    Article  PubMed  PubMed Central  Google Scholar 

  33. David S, Stahl K. To remove and replace-a role for plasma exchange in counterbalancing the host response in sepsis. Crit Care. 2019;23(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tetta C, et al. Removal of cytokines and activated complement components in an experimental model of continuous plasma filtration coupled with sorbent adsorption. Nephrol Dial Transplant. 1998;13(6):1458–64.

    Article  CAS  PubMed  Google Scholar 

  35. Livigni S, et al. Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: a multicenter randomised controlled clinical trial. BMJ Open. 2014;4(1):e003536.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ankawi G, et al. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. Crit Care. 2018;22(1):262.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cruz DN, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA. 2009;301(23):2445–52.

    Article  CAS  PubMed  Google Scholar 

  38. Payen DM, et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med. 2015;41(6):975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Klein DJ, et al. The EUPHRATES trial (Evaluating the Use of Polymyxin B Hemoperfusion in a Randomized controlled trial of Adults Treated for Endotoxemia and Septic shock): study protocol for a randomized controlled trial. Trials. 2014;15:218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dellinger RP, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: the EUPHRATES randomized clinical trial. JAMA. 2018;320(14):1455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klein DJ, et al. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018;44(12):2205–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kellum JA, et al. Feasibility study of cytokine removal by hemoadsorption in brain-dead humans. Crit Care Med. 2008;36(1):268–72.

    Article  CAS  PubMed  Google Scholar 

  43. Houschyar KS, et al. Continuous hemoadsorption with a cytokine adsorber during sepsis - a review of the literature. Int J Artif Organs. 2017;40(5):205–11.

    Article  CAS  PubMed  Google Scholar 

  44. Honore PM, De Bels D, Spapen HD. An update on membranes and cartridges for extracorporeal blood purification in sepsis and septic shock. Curr Opin Crit Care. 2018;24(6):463–8.

    Article  PubMed  Google Scholar 

  45. Kogelmann K, et al. Hemoadsorption by CytoSorb in septic patients: a case series. Crit Care. 2017;21(1):74.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Friesecke S, et al. Extracorporeal cytokine elimination as rescue therapy in refractory septic shock: a prospective single-center study. J Artif Organs. 2017;20(3):252–9.

    Article  CAS  PubMed  Google Scholar 

  47. Friesecke, S., et al., International registry on the use of the CytoSorb(R) adsorber in ICU patients: Study protocol and preliminary results. Med Klin Intensivmed Notfmed, 2017.

    Google Scholar 

  48. WHO. World Antibiotic Awareness Week. 2019.; Available from: https://www.who.int/campaigns/world-antibiotic-awareness-week.

  49. Martin L, et al. Antimicrobial peptides in human sepsis. Front Immunol. 2015;6:404.

    PubMed  PubMed Central  Google Scholar 

  50. Easton DM, et al. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol. 2009;27(10):582–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gutsmann T, et al. New antiseptic peptides to protect against endotoxin-mediated shock. Antimicrob Agents Chemother. 2010;54(9):3817–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heinbockel L, et al. Preclinical investigations reveal the broad-spectrum neutralizing activity of peptide Pep19-2.5 on bacterial pathogenicity factors. Antimicrob Agents Chemother. 2013;57(3):1480–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schuerholz T, et al. The anti-inflammatory effect of the synthetic antimicrobial peptide 19-2.5 in a murine sepsis model: a prospective randomized study. Crit Care. 2013;17(1):R3.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guntupalli K, et al. A phase 2 randomized, double-blind, placebo-controlled study of the safety and efficacy of talactoferrin in patients with severe sepsis. Crit Care Med. 2013;41(3):706–16.

    Article  CAS  PubMed  Google Scholar 

  55. Vincent JL, et al. Talactoferrin in severe Sepsis: results from the phase II/III oral talactoferrin in severe sepsis trial. Crit Care Med. 2015;43(9):1832–8.

    Article  CAS  PubMed  Google Scholar 

  56. Vogel HJ. Lactoferrin, a bird’s eye view. Biochem Cell Biol. 2012;90(3):233–44.

    Article  CAS  PubMed  Google Scholar 

  57. Nibbering PH, et al. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect Immun. 2001;69(3):1469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Venet F, et al. Early assessment of leukocyte alterations at diagnosis of septic shock. Shock. 2010;34(4):358–63.

    Article  CAS  PubMed  Google Scholar 

  61. Drewry AM, et al. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock. 2014;42(5):383–91.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Venet F, et al. IL-7 restores T lymphocyte immunometabolic failure in septic shock patients through mTOR activation. J Immunol. 2017;199(5):1606–15.

    Article  CAS  PubMed  Google Scholar 

  63. Sprent J, Surh CD. Interleukin 7, maestro of the immune system. Semin Immunol. 2012;24(3):149–50.

    Article  PubMed  Google Scholar 

  64. Levy Y, et al. Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin Infect Dis. 2012;55(2):291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Venet F, et al. IL-7 restores lymphocyte functions in septic patients. J Immunol. 2012;189(10):5073–81.

    Article  CAS  PubMed  Google Scholar 

  66. Watanabe E, Thampy LK, Hotchkiss RS. Immunoadjuvant therapy in sepsis: novel strategies for immunosuppressive sepsis coming down the pike. Acute Med Surg. 2018;5(4):309–15.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shao R, et al. Monocyte programmed death ligand-1 expression after 3-4 days of sepsis is associated with risk stratification and mortality in septic patients: a prospective cohort study. Crit Care. 2016;20(1):124.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guignant C, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care. 2011;15(2):R99.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Patera AC, et al. Frontline Science: defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1. J Leukoc Biol. 2016;100(6):1239–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in Cancer therapy. J Clin Oncol. 2015;33(17):1974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fuller MJ, et al. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1). Proc Natl Acad Sci U S A. 2013;110(37):15001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thampy LK, et al. Restoration of T cell function in multi-drug resistant bacterial sepsis after interleukin-7, anti-PD-L1, and OX-40 administration. PLoS One. 2018;13(6):e0199497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Garcia-Ponce A, et al. Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family. Tissue Barriers. 2016;4(4):e1228439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kato J, et al. Plasma adrenomedullin concentration in patients with heart failure. J Clin Endocrinol Metab. 1996;81(1):180–3.

    CAS  PubMed  Google Scholar 

  75. Geven C, et al. Vascular effects of Adrenomedullin and the anti-adrenomedullin antibody adrecizumab in sepsis. Shock. 2018;50(2):132–40.

    Article  CAS  PubMed  Google Scholar 

  76. Geven C, et al. Effects of the humanized anti-adrenomedullin antibody adrecizumab (HAM8101) on vascular barrier function and survival in rodent models of systemic inflammation and sepsis. Shock. 2018;50(6):648–54.

    Article  CAS  PubMed  Google Scholar 

  77. Geven C, Pickkers P. The mechanism of action of the adrenomedullin-binding antibody adrecizumab. Crit Care. 2018;22(1):159.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Marino R, et al. Plasma adrenomedullin is associated with short-term mortality and vasopressor requirement in patients admitted with sepsis. Crit Care. 2014;18(1):R34.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mebazaa A, et al. Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study. Crit Care. 2018;22(1):354.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Geven C, et al. Safety, tolerability and pharmacokinetics/pharmacodynamics of the adrenomedullin antibody adrecizumab in a first-in-human study and during experimental human endotoxaemia in healthy subjects. Br J Clin Pharmacol. 2018;84(9):2129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manzanares W, Hardy G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care. 2011;14(6):610–7.

    Article  CAS  PubMed  Google Scholar 

  82. Donnino MW, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med. 2016;44(2):360–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moskowitz A, et al. Thiamine as a renal protective agent in septic shock. A secondary analysis of a randomized, double-blind, placebo-controlled trial. Ann Am Thorac Soc. 2017;14(5):737–41.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Holmberg MJ, et al. Thiamine in septic shock patients with alcohol use disorders: an observational pilot study. J Crit Care. 2018;43:61–4.

    Article  CAS  PubMed  Google Scholar 

  85. Marik PE. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacol Ther. 2018;189:63–70.

    Article  CAS  PubMed  Google Scholar 

  86. Fowler AA 3rd, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014;12:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Carr AC, et al. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care. 2017;21(1):300.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Marik PE, et al. Hydrocortisone, vitamin C, and thiamine for the treatment of severe Sepsis and septic shock: a retrospective before-after study. Chest. 2017;151(6):1229–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Jarczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jarczak, D., Nierhaus, A. (2019). Advances in Sepsis Treatment. In: Williams, K. (eds) Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-17148-3_23

Download citation

Publish with us

Policies and ethics