Skip to main content

Ensuring the Robustness of Modern Mechatronic Systems Using Artificial Intelligence Methods

  • Conference paper
  • First Online:
Artificial Intelligence in Models, Methods and Applications (AIES 2022)

Abstract

In this paper we propose design principles that make use of neural network algorithms, artificial intelligence methods, and methods of terminal control for the synthesis of controllers for the sensing elements and the stabilization loop in a test bench, which is considered a modern mechatronic system that ensures the best robustness of the automatic control system. We show that the use of the artificial neuron network allows one to achieve some advantages to be compared with the conventional analog mechatronic system, which discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leve, F.A., Hamilton, B.J., Peck, M.A.: Spacecraft Momentum Control Systems, p. 247. Springer Cham (2015)

    Google Scholar 

  2. Manmathakrishnan, P., Pannerselvam, R.: Design and performance evaluation of single axis gyrostabilizer for motion stabilization of a scaled Barge model. In: Oceans 2019 MTS/IEEE Seattle, pp. 1–7 (2019). https://doi.org/10.23919/OCEANS40490.2019.8962634

  3. Deputatova, E.A., Kalikhman, D.M., Polushkin, A.V., Sadomtsev, Y.V.: Digital stabilization of motion of precision controlled base platforms with inertial sensitive elements. I. Application of float angular velocity sensor. J. Comput. Syst. Sci. Int. 50(1), 117–129 (2011)

    Google Scholar 

  4. Deputatova, E.A., Kalikhman, D.M., Polushkin, A.V., Sadomtsev, Yu.V.: Digital stabilization of motion of precision controlled base platforms with inertial sensitive elements. II. Application of float angular velocity sensor and pendulum accelerometers. J. Comput. Syst. Sci. Int. 50(2), 309–324 (2011).

    Google Scholar 

  5. Nikiforov, V.M., Gusev, A.A., Zhukova, T.A., Shiryaev, A.S., Andreev, K.A.: “Supersoft” control of final parameters in a single-axis gyrostabilizer. In: Proc. of the 26th Saint Petersburg Int. Conf. on Integrated Navigation Systems, pp. 319–321 (2019)

    Google Scholar 

  6. Jeanroy, A., Bouvet, A., Remillieux, G.: HRG and marine applications. Gyroscopy Navig. 5, 67–74 (2014)

    Google Scholar 

  7. Kuznetsov, A.G., Portnov, B.I., Izmailov, E.A.: Modern strapdown inertial navigation systems of two accuracy classes. Proc. MIEA Navig. Aircr. Control 8, 24–32 (2014) (in Russian)

    Google Scholar 

  8. Deputatova, E.A., Skorobogatov, V.V., Gnusarev, D.S.: Prospects for the development of SINS using modern types of gyroscopes and accelerometers in rocket and space technology. In: Proc. of the VII Int. Sci. Conf. “Problems of Control, Processing and Transmission of Information”, pp. 29–53. Lodi, Saratov (2019) (in Russian)

    Google Scholar 

  9. Negri, C., Labarre, E., Lignon, C., Brunstein, E., Salaün, E.: A new generation of IRS with innovative architecture based on HRG for satellite launch vehicles. Gyroscopy Navig. 7, 223–230 (2016)

    Article  Google Scholar 

  10. Paturel, Y., Honthaas, J., Lefevre, E., Napolitano, F.: One nautical mile per month fog-based strapdown inertial navigation system: a dream already within reach? Gyroscopy Navig. 5, 1–8 (2014)

    Article  Google Scholar 

  11. Peshekhonov, V.G., Litmanovich, Yu.A., Vershovskiy, A.K.: Gyroscope based on the phenomenon of nuclear magnetic resonance: past, present, future. In: Proc. of the 7th Russian Conf. on Control Problems, pp. 35–42. CSRI Elektropribor, St. Petersburg (2014)

    Google Scholar 

  12. Rivkin, B.S.: Analytical review of the state of research and development in the field of navigation abroad, Issues 1–5. CSRI Elektropribor, St. Petersburg (2017–2020) (in Russian)

    Google Scholar 

  13. Polozhentcev, D.S., Davidov, A.A., Shipov, M.G., Kazakov, E.P., Malykh, B.I.: Design of control moment gyro electric drive with strict requirements on ensuring desired rotational velocities. VESTNIK Samara Univ. Aerosp. Mech. Eng. 19(3), 31–38 (2020). (in Russian)

    Article  Google Scholar 

  14. Ermakov, R.V., Kalihman, D.M., Kalihman, L.Ya., Nakhov, S.F., Turkin, V.A., Lvov, A.A., Sadomtsev, Yu.V., Krivtsov, E.P., Yankovskiy, A.A.: Fundamentals of developing integrated digital control of precision stands with inertial sensors using signals from an angular rate sensor, accelerometer, and an optical angle sensor. In: Proc. 23rd St.-Petersburg Int. Conf. on Integrated Navigation Systems, ICINS 2016, pp. 361–365 (2016)

    Google Scholar 

  15. Kalikhman, D.M., Kalikhman, L.Y., Deputatova, E.A., Krainov, A.P., Krivtsov, E.P., Yankovsky, A.A., Ermakov, R.V., L’vov, A.A.: Ways of extending the measurement range and increasing the accuracy of rotary test benches with inertial sensory elements for gyroscopic devices. In: Proc. 25-th Anniv. St.-Petersburg Int. Conf. on Integrated Navigation Systems, pp. 460–465. CSRI Elektropribor, St.-Petersburg, Russia (2018)

    Google Scholar 

  16. Ermakov, R.V., Seranova, A.A., L’vov, A.A., Kalikhman, D.M.: Optimal estimation of the motion parameters of a precision rotating stand by maximum likelihood method. Meas. Tech. 62(2), 139–146 (2019)

    Google Scholar 

  17. Ermakov, R.V., Kalihman, D.M., L’vov, A.A., Sokolov, D.N.: Angular velocity estimation of rotary table bench using aggregate information from the sensors of different physical nature. In: Proc. 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conf., pp. 820–825 (2017)

    Google Scholar 

  18. Ermakov, R.V., L’vov, A.A., Seranova, A.A., Melnikova, N.I., Umnova, E.G.: Numerical simulation results of the optimal estimation algorithm for a turn table angular velocity. In: Studies in Systems, Decision and Control, vol. 337, pp. 102–113. Springer Nature Switzerland (2020)

    Google Scholar 

  19. Glazkov, V.P., Daurov, S.K., L’vov, A.A., Askarova, A.Kh., Kalikhman, D.M.: Dynamic error reduction via continuous robot control using the neural network technique. In: Studies in Systems, Decision and Control, vol. 337, pp. 175–184. Springer Nature Switzerland (2020)

    Google Scholar 

  20. Hernández-Guzmán, V.M., Silva-Ortigoza, R.: Automatic Control with Experiments, p. 992. Springer Cham (2019)

    Google Scholar 

  21. Tsui, C.-C.: Robust Control System Design: Advanced State Space Techniques (Automation and Control Engineering), 2nd edn., p. 500. CRC Press, Boca Raton (2019)

    Google Scholar 

  22. Philips, C.L., Nagle, H.T., Chakrabortty, A.: Digital Control System Analysis and Design, 4th edn., p. 522. Pearson Education Ltd., Harlow (2015)

    Google Scholar 

  23. Kuo, B.C.: Digital Control Systems, p. 730. Oxford University Press (1995)

    Google Scholar 

  24. Kondratenko, Y.P., Kuntsevich, V.M., Chikrii, A.A., Gubarev, V.F.: Recent Developments in Automatic Control Systems, p. 490. River Publishers, Gistrup (2021)

    Google Scholar 

  25. Khan, F.A., Nisar, S.: Design and analysis of feedback control system. In: Proc. of the 2018 Int. Conf. on Information and Communications Technology, Yogyakarta, pp. 16–24 (2018)

    Google Scholar 

  26. Kuo, B.C.: Automatic Control Systems, 7th edn., p. 928. Wiley, Hoboken (1995)

    Google Scholar 

  27. Nikiforov, V.M., Bespalova, N.M., Dorokhin, Yu.P.: Modeling of the systematic error of a precision angle converter and its estimation using neural networks. Trudy NPCAP “Sist. Prib. Upr.” (Proc. NPCAP Control Syst. Instrum.) 3, 97–108 (2010) (in Russian)

    Google Scholar 

  28. Nikiforov, V.M., Zaitsev, S.A.: Motion control of dynamic systems based on neural network technologies. TrudyFGUP NPCAP “Sist. Prib. Upr.” (Proc. NPCAP Control Syst. Instrum.) 2, 38–50 (2011) (in Russian)

    Google Scholar 

  29. Liu, Z., Jahanshahi, H., Gómez-Aguilar, J.F., Fernandez-Anaya, G., Torres-Jiménez, J., Aly, A.A., Aljuaid, A.M.: Fuzzy adaptive control technique for a new fractional-order supply chain system. Phys. Scr. 96(12), 124047 (2021)

    Article  Google Scholar 

  30. Qi, R., Tao, G., Jiang B.: Fuzzy System Identification and Adaptive Control, p. 332. Springer Nature (2019)

    Google Scholar 

  31. Khvorostukhina, E.V., L’vov, A.A., Ivzhenko, S.P.: Performance improvements of a Kohonen self-organizing training algorithm. In: Proc. of the 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conf., St. Petersburg, Russia, pp. 308–311 (2017)

    Google Scholar 

  32. Nikiforov, V.M., Shiryaev, A.S.: Terminal optimal motion control of technical systems (TS) based on an observer in Kalman form. Trudy NPCAP “Sist. Prib. Upr.” (Proc. NPCAP Control Syst. Instrum.) 3, 109–122 (2010) (in Russian)

    Google Scholar 

  33. Nikiforov, V.M.: Terminalnoe “sverkhmaygkoe” upravlenie girostabilizirovannoi platformoi (Terminal “Supreme Soft” Control of Gyrostabilized Platform), p. 146. Kursk (2022) (in Russian)

    Google Scholar 

  34. Grebennikov, V.I., Deputatova, E.A., Kalikhman, D.M., Kalikhman, L.Ya., Skorobogatov, V.V.: Digitally controlled pendulum accelerometer with new functionality. Comput. Syst. Sci. Int. 2, 73–95 (2021)

    Google Scholar 

  35. Kalikhman, D.M., Deputatova, E.A., Skorobogatov, V.V., Nakhov, S.F.: General concept of creation of digital control systems of precision test benches with inertial sensory elements. Bull. Tula State Tech. Univ. Tech. Sci. 10, 91–102 (2016) (in Russian)

    Google Scholar 

  36. Kalikhman, D.M., Deputatova, E.A., Gnusarev, D.S., Skorobogatov, V.V., Nikoforov, V.M., Krivtsov, E.P., Yankovsky, A.A.: Development of digital regulators for control systems of gyroscopic devices and associated metrological installations using modern methods of synthesis to improve accuracy and dynamic characteristics. In: Proc. of the 26th Saint Petersburg Int. Conf. on Integrated Navigation Systems, pp. 377–382 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Lvov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalikhman, D. et al. (2023). Ensuring the Robustness of Modern Mechatronic Systems Using Artificial Intelligence Methods. In: Dolinina, O., et al. Artificial Intelligence in Models, Methods and Applications. AIES 2022. Studies in Systems, Decision and Control, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-031-22938-1_32

Download citation

Publish with us

Policies and ethics