Skip to main content

Phytochemistry and Biological Activity in the Halophytes

  • Chapter
  • First Online:
Halophyte Plant Diversity and Public Health

Abstract

Halophytes are highly specialized plants having specific morphological and physiological adaptations that allow them to survive under saline conditions. Their tolerance is determined by different factors, as they have variety of adaptations to maintain their ion homeostasis in such environments and they acquire or store water as well as protect their cells from a damage due to ROS “Reactive Oxygen Species” accumulation (Flowers and Colmer 2008; Shabala and Mackay 2011). These plants possess different types of biocompounds which are useful in view of their biological activities such as anti-microbial and antioxidant ones (Ksouri et al. 2012a). The biocompounds increase the nutraceutical value of such plant taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz SM, Mouafi FE, Moustafa YA, Abdelwahed NAM (2016) Medicinal importance of mangrove plants. In: Garg N, Abdel-Aziz SM, Aeron A (eds) Microbes in food and health. Springer, Cham, Switzerland, pp 77–96

    Chapter  Google Scholar 

  • Ahmad P, Ozturk M, Sharma S, Gucel S (2013) Effect of sodium carbonate ınduced salinity- alkalinity on some key osmoprotectants protein profile antioxidant enzymes and lipid peroxidation in two mulberry (Morus alba L.) cultivars. J Plant Interact 9(1):460–467

    Article  Google Scholar 

  • Al-Omar MS, Mohammed HA, Mohammed SA et al (2020) Anti-microbial, anti-oxidant, and α-amylase ınhibitory activity of traditionally-used medicinal herbs: a comparative analyses of pharmacology, and phytoconstituents of regional halophytic plants’ diaspora. Molecules 25(22):5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Amelot EM, Oliveros A, Calcagno-Pisarelli PM (2004) Phenolics and condensed tannins in relation to altitude in neotropical Pteridium spp. A field study in the Venezuelan Andes. Biochem Syst Ecol 32:969–981

    Article  CAS  Google Scholar 

  • Arora S, Kumar G, Meena S (2017) Gas chromatography-mass spectroscopy analysis of root of an economically important plant, Cenchrus ciliaris L. from Thar desert, Rajasthan (India). Asian J Pharm Clin Res 10:64–69

    Article  CAS  Google Scholar 

  • Arya SS, Devi S, Ram K et al (2019) Halophytes: the plants of therapeutic medicine. In: Hasanuzzaman M et al (eds) Ecophysiology, abiotic stress responses and utilization of halophytes. Springer, Singapore, pp 271–287

    Chapter  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri ındustrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Bayala B, Bassole IH, Scifo R et al (2014) Anticancer activity of essential oils and their chemical components-a review. Am J Cancer Res 4:591–607

    PubMed  PubMed Central  Google Scholar 

  • Bernal J, Mendiola JA, Ibánez E, Cifuentes A (2011) Advanced analysis of nutraceuticals. J Pharm Biomed Anal 55:758–774

    Article  CAS  PubMed  Google Scholar 

  • Bernstein N, Shoresh M, Xu Y, Huang B (2010) Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radic Biol Med 49:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Boughalleb F, Denden M (2011) Physiological and biochemical changes of two halophytes, Nitraria retusa (Forssk.) and Atriplex halimus L. under increasing salinity. Agric J 6:327–339

    Article  CAS  Google Scholar 

  • Buhmann A, Papenbrock J (2013) Biofiltering of aquaculture effluents by halophytic plants: basic principles, current uses and future perspectives. Environ Exp Bot 92:122–133

    Article  Google Scholar 

  • Cagliari A, Margis R, Dos SMF et al (2011) Biosynthesis of triacylglycerols (TAGs) in plants and alga. Int J Plant Biol 2:40–52

    Article  CAS  Google Scholar 

  • Caparrós PG, Ozturk M, Gul A et al (2022) Halophytes have potential as heavy metal phytoremediators: A comprehensive review. Environ Exp Bot 193:104666

    Article  Google Scholar 

  • Casuga FP, Castillo AL, Corpuz MJAT (2016) GC-MS analysis of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco) (Moraceae) leaves. Asian Pac J Trop Biomed 6:957–961

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological application. Plant Cell Environ 34:1–20

    Article  PubMed  Google Scholar 

  • Choi WH (2016) Evaluation of anti-tubercular activity of linolenic acid and conjugated-linoleic acid as effective inhibitors against mycobacterium tuberculosis. Asian Pac J Trop Med 9:125–129

    Article  CAS  PubMed  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crozier A, Clifford NM, Ashihara H (2006) Plant secondary metabolites: occurrence, structure, and role in the human diet. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dajic Stevanovic Z, Janackovic P, Stankovic M (2014) Are there still neglected medicinal plants beyond official and traditional consideration? In: Dajic Stevanovic Z, Ibraliu A (eds) Proceedings of the 8th conference on medicinal and aromatic plants of Southeast European Countries (8th CMAPSEEC), 19-22 May 2014. Albanian Academy of Science, Agricultural University of Tirana and AMAPSEEC, Durrës, Albania, p 13–23

    Google Scholar 

  • de Jesus Cortes-Sanchez A, Hernández-Sánchez H, Jaramillo-Flores ME (2013) Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 168(1):22–32

    Article  Google Scholar 

  • Do QD, Angkawijaya AE, Tran-Nguyen PL et al (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22:296–302

    Article  CAS  PubMed  Google Scholar 

  • Duangmano S, Dakeng S, Jiratchariyakul W et al (2010) Antiproliferative effects of cucurbitacin B in breast cancer cells: down-regulation of the c-Myc/hTERT/Telomerase pathway and obstruction of the cell cycle. Int J Mol Sci 11:5323–5338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falleh H, Ksouri R, Medini F et al (2011) Antioxidant activity and phenolic composition of the medicinal and edible halophyte Mesembryanthemum edule L. Ind Crop Prod 34:1066–1071

    Article  CAS  Google Scholar 

  • Fan TWM, Colmer TD, Lane AN, Higashi RM (1993) Determination of metabolites by H NMR and GC: analysis for organic osmolytes in crude tissue extracts. Anal Biochem 214:260–271

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Galvani A (2007) The challenge of the food sufficiency through salt tolerant crops. Rev Environ Sci Biotechnol 6:3–16

    Article  CAS  Google Scholar 

  • Garcia-Caparros P, De Filippis L, Gul A et al (2021) Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev 87(4):421–466

    Article  Google Scholar 

  • Gourine N, Bombarda MI, Nadjemi B et al (2010) Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Ind Crop Prod 31:203–208

    Article  CAS  Google Scholar 

  • Hameed M, Ashraf M, Ahmad MSA, Naz N (2010) Structural and functional adaptations in plants for salinity tolerance. In: Asharaf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Berlin Germany, pp 151–173

    Chapter  Google Scholar 

  • Hansakul P, Wongnoppavich A, Ingkaninan K et al (2009) Apoptotic induction activity of Dactyloctenium aegyptium (L.) P.B. and Eleusine indica (L.) Gaerth. extracts on human lung and cervical cancer cell lines. Songklanakarin J Sci Technol 31:273–279

    Google Scholar 

  • Jallali I, Megdiche W, M’Hamdi B et al (2012) Changes in phenolic composition and antioxidant activities of the edible halophyte Crithmum maritimum L. with physiological stage and extraction method. Acta Physiol Plant 34:1451–1459

    Article  CAS  Google Scholar 

  • Jayakannan M, Bose J, Baboutina O et al (2013) Salicyclic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jdey A, Falleh H, Jannet SB et al (2017) Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. S Afr J Bot 112:508–514

    Article  CAS  Google Scholar 

  • Kang S, Kim D, Lee BH et al (2011) Antioxidant properties and cytotoxic effects of fractions from glasswort (Salicornia herbacea) seed extracts on human intestinal cells. Food Sci Biotechnol 20:115–122

    Article  CAS  Google Scholar 

  • Karker M, Falleh H, Msaada K et al (2016) Antioxidant, anti-inflammatory and anticancer activities of the medicinal halophyte Reaumuria vermiculata. Clin. Exp. Med Sci J 15:297–307

    Google Scholar 

  • Khan DA, Hamdani SDA, Iftikhar S et al (2021) Pharmacoinformatics approaches in the discovery of drug-like antimicrobials of plant origin. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1894982

  • Khoo BY, Chua SL, Balaram P (2010) Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 11:2188–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong NN, Fang ST, Wang JH et al (2014) Two new flavonoid glycosides from the halophyte Limonium franchetii. J Asian Nat Prod Res 16(4):370–375

    Article  CAS  PubMed  Google Scholar 

  • Kong CS, Kim YA, Kim H, Seo Y (2016) Evaluation of a furochromone from the halophyte Corydalis heterocarpa for cytotoxic activity against human gastric cancer (AGS) cells. Food Funct 7(12):4823–4829

    Article  CAS  PubMed  Google Scholar 

  • Ksouri R, Falleh H, Megdiche W et al (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091

    Article  CAS  PubMed  Google Scholar 

  • Ksouri R, Ksouri WM, Jallali I et al (2012a) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 32:289–326

    Article  CAS  PubMed  Google Scholar 

  • Ksouri R, Smaoui A, Isoda H, Abdelly C (2012b) Utilization of halophyte species as new sources of bioactive substances. J Arid Land Stud 22:41–44

    Google Scholar 

  • Ksouri WM, Medini F, Mkadmini K et al (2013) LC-ESI-TOF-MS identification of bioactive secondary metabolites involved in the antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Zygophyllum album Desf. Food Chem 139(1-4):1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93

    Article  CAS  Google Scholar 

  • Kunkel SD, Elmore CJ, Bongers KS et al (2012) Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver sisease. PLoS One 7:e39332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kong CS, Jung M et al (2011) Antioxidant activity of the halophyte Limonium tetragonum and its major active components. Biotechnol Bioprocess Eng 16:992–999

    Article  CAS  Google Scholar 

  • Leleka M, Zalis’ka O, Kozyr G (2016) Screening research of pharmaceutical compositions based on succinic acid, ascorbic acid and rutin. J Pharm Pharmacol 4:486–491

    Google Scholar 

  • Lima LM, Perazzo FF, Tavares CJC, Bastos JK (2007) Anti-inflammatory and analgesic activities of the ethanolic extracts from Zanthoxylum riedelianum (Rutaceae) leaves and stem bark. J Pharm Pharmacol 59:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Lou Z, Wang H, Zhu S et al (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76(6):398–403

    Article  Google Scholar 

  • Mansour MMF, Ali EF (2017) Evaluation of proline fuctions in saline conditions. Phytochemistry 140:52–68

    Article  CAS  PubMed  Google Scholar 

  • Maria VF, Maria AFF, Diana CGP (2019) Halophytic grasses, a new source of nutraceuticals? A review on their secondary metabolites and biological activities. Int J Mol Sci 20(5):1067

    Article  Google Scholar 

  • Medini F, Bourgou S, Lalancette GK et al (2015) Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. S Afr J Bot 99:158–164

    Article  CAS  Google Scholar 

  • Menzel U, Lieth H (1999) Halophyte database vers. 2.0. Halophyte uses in different climates I: Ecological and ecophysiological studies. In: Lieth H et al (eds) Progress in biometeorology. Backhuys Publishers, Leiden, pp 77–88

    Google Scholar 

  • Meot-Duros L, Le Floch G, Magne C (2008) Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J Ethnopharmacol 116:258–262

    Article  PubMed  Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:1–17

    Article  Google Scholar 

  • Mishra K, Ojha KS et al (2014) Protective effect of ferulic acid on ionizing radiation induced damage in bovine serum albumin. Int J Radiat Res 12:113–121

    Google Scholar 

  • Mohammed HA (2020) The valuable ımpacts of halophytic genus Suaeda; nutritional, chemical, and biological values. Med Chem 16:1

    Article  Google Scholar 

  • Mostafa MG, Hossain MA, Fujita M (2015) Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma 252:461–475

    Article  Google Scholar 

  • Obón C, Rivera D, Verde A, Alcaraz F (2021) Ethnopharmacology and medicinal uses of extreme halophytes. In: Grigore M-N (ed) Handbook of halophytes: from molecules to ecosystems towards biosaline agriculture. Springer Nature, Switzerland, pp 2707–2735

    Chapter  Google Scholar 

  • Oueslati S, Ksouri R, Falleh H et al (2012a) Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem 132(2):943–947

    Article  CAS  Google Scholar 

  • Oueslati S, Trabelsi N, Boulaaba M et al (2012b) Evaluation of antioxidant activities of the edible and medicinal Suaeda species and related phenolic compounds. Ind Crop Prod 36(1):513–518

    Article  CAS  Google Scholar 

  • Ozturk M, Szaniawiski RK (1981) Root temperature stress and proline content in leaves and roots of two ecologically different plant species. Plant Physiol 102:375–377

    Google Scholar 

  • Ozturk M, Sato T, Takahashi N (1986) Proline accumulation in shoots and roots of some ecophysiologically different plants under root temperature stress. Environ Control Biol (Japan) 24:79–85

    Article  CAS  Google Scholar 

  • Ozturk M, Turkyilmaz B, Gucel S, Guvensen A (2011) Proline accumulation in some coastal zone plants of the aegean region of Turkey. Eur J Plant Sci Biotechnol 5(Special Issue 2):54–56

    Google Scholar 

  • Ozturk M, Gucel S, Altay V et al (2019) Clustering of halophytic species from Cyprus based on ionic contents. Pyton Int J Exp Bot 88(3):223–238

    Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278

    Article  Google Scholar 

  • Parida AK, Kumari A, Rangani J, Patel M (2019) Halophytes: potential resources of coastal ecosystems and their economic, ecological and bioprospecting significance. In: Hasanuzzaman M et al (eds) Halophytes and climate change: adaptive mechanisms and potential uses. CAB International, pp 287–323

    Chapter  Google Scholar 

  • Patel MK, Mishra A, Jha B (2016) Untargeted metabolomics of halophytes. In: Kim S (ed) Marine Omics: principles and applications. CRC Press, Boca Raton, FL, pp 309–325

    Google Scholar 

  • Plouguerné E, da Gama BAP, Pereira RC, Barreto-Bergter E (2014) Glycolipids from seaweeds and their potential biotechnological applications. Front Cell Infect Microbiol 4. https://doi.org/10.3389/fcimb.2014.00174

  • Povichit N, Phrutivorapongkul A, Suttajit M et al (2010) Phenolic content and in vitro inhibitory effects on oxidation and protein glycation of some Thai medicinal plant. Pak J Pharm Sci 23(4):403–408

    CAS  PubMed  Google Scholar 

  • Qasim M, Gulzar S, Khan MA (2011) Halophytes as medicinal plants. In: Öztürk M, Mermut AR, Celik A (eds) Urbanisation, land use, land degradation and environment. Daya Publishing House, New Delhi, pp 330–343

    Google Scholar 

  • Qian D, Zhao Y, Yang G, Huang L (2017) Systematic review of chemical constituents in the genus Lycium (Solanaceae). Molecules 22:1–33

    Article  Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Eng 50:586–621

    Article  CAS  Google Scholar 

  • Raza MM, Ullah S, Aziz T et al (2019) Alleviation of salinity stress in maize using silicon nutrition. Not Bot Horti Agro Botanica 47(4):1340–1347

    Article  CAS  Google Scholar 

  • Rejeb KB, Abdelly C, Savoure A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  PubMed  Google Scholar 

  • Ren W, Qiao Z, Wang H et al (2003) Flavonoids: promising anticancer agents. Med Res Rev 23(4):519–534

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues MJ, Gangadhar KN, Vizetto-Duarte C et al (2014) Maritime halophyte species from southern Portugal as sources of bioactive molecules. Marine Drugs 12(4):2228–2244

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues MJ, Soszynski A, Martins A et al (2015) Unravelling the antioxidant potential and the phenolic composition of different anatomical organs of the marine halophyte Limonium algarvense. Ind Crop Prod 77:315–322

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebrtaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Saleem M (2009) Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett 285:109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh IA, Usman K, Abu-Dieyeh MH (2021) Halophytes as ımportant sources of antioxidants and anti-cholinesterase compounds. In: Grigore M-N (ed) Handbook of halophytes: from molecules to ecosystems towards biosaline agriculture. Springer Nature, Switzerland, pp 1931–1951

    Chapter  Google Scholar 

  • Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–199

    Article  CAS  Google Scholar 

  • Shahrasbi S, Pirasteh-Anosheh H, Emam Y et al (2021) Elucidating some physiological mechanisms of salt tolerance in Brassica napus L. seedlings induced by seed priming with plant growth regulators. Pak J Bot 53(2):34

    Article  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A et al (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolowska-Krzaczek A, Skalicka-Wozniak K, Czubkowska K (2009) Variation of phenolic acids from herb and roots of Salsola kali L. Acta Soc Bot Pol 78:197–201

    CAS  Google Scholar 

  • Stanković M, Jakovljević D (2021) Phytochemical diversity of halophytes. In: Grigore M-N (ed) Handbook of halophytes: from molecules to ecosystems towards biosaline agriculture. Springer Nature, Switzerland, pp 2089–2114

    Chapter  Google Scholar 

  • Stanković M, Jakovljević D, Stojadinov M, Stevanović ZD (2019) Halophyte species as a source of secondary metabolites with antioxidant activity. In: Hasanuzzaman M et al (eds) Ecophysiology, abiotic stress responses and utilization of halophytes. Springer, Singapore, pp 289–312

    Chapter  Google Scholar 

  • Stevanovic Z, Stankovic MS, Stankovic J et al (2019) Use of halophytes as medicinal plants: phytochemical diversity and biological activity. In: Hasanuzzaman M, Shabala S, Fujita M (eds) Halophytes and climate change: adaptive mechanisms and potential uses. CAB International, pp 343–358

    Chapter  Google Scholar 

  • Stöckigt J, Sheludko Y, Unger M et al (2002) High-performance liquid chromatographic, capillary electrophoretic and capillary electrophoretic-electrospray ionisation mass spectrometric analysis of selected alkaloid groups. J Chromatogr A 967:85–113

    Article  PubMed  Google Scholar 

  • Stuchlík M, Žák S (2002) Vegetable lipids as components of functional foods. Biomedical Papers 146:3–10

    Article  PubMed  Google Scholar 

  • Trabelsi N, Oueslati S, Falleh H et al (2012) Isolation of powerful antioxidants from the medicinal halophyte Limoniastrum guyonianum. Food Chem 135(3):1419–1424

    Article  CAS  PubMed  Google Scholar 

  • Turkyilmaz Unal B, Guvensen A, Esiz Dereboylu A, Ozturk M (2013) Variations in the proline and total protein contents in Origanum sipyleum L. from different altitudes of Spil Mountain, Turkey. Pak J Bot 45(S1):571–576

    Google Scholar 

  • Wang H, Wang X, You J et al (2007) Comparative analysis of allantoin, quercetin, and 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid in Nitraria tangutorum Bobr. seed by HPLC-APCI-MS and CE. J Liq Chromatogr Relat Technol 30:363–376

    Article  CAS  Google Scholar 

  • Wang X, Zhang M, Zhao Y et al (2013) Pentadecyl ferulate, a potent antioxidant and antiproliferative agent from the halophyte Salicornia herbacea. Food Chem 141(3):2066–2074

    Article  CAS  PubMed  Google Scholar 

  • Widhalm JR, Dudareva N (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 8:83–97

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  PubMed  Google Scholar 

  • Wong SP, Leong LP, Koh JHW (2006) Antioxidant activities of aqueous extracts of selected plants. Food Chem 99:775–783

    Article  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought and salt stress. Plant Cell 2002(Supplement):165–183

    Article  Google Scholar 

  • Xu DP, Li Y, Meng X et al (2017) Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci 18(1):96

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon BH, Jung JW, Lee JJ et al (2007) Anxiolytic-like effects of sinapic acid in mice. Life Sci 81:234–240

    Article  CAS  PubMed  Google Scholar 

  • Younessi-Mehdikhanlou M, Ozturk M, Jafarpour S, Mahna N (2022) Exploitation of next generation sequencing technologies for unraveling metabolic pathways in medicinal plants: a concise review. Ind Crop Prod 178(114669):1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozturk, M., Altay, V., Nazish, M., Ahmad, M., Zafar, M. (2023). Phytochemistry and Biological Activity in the Halophytes. In: Halophyte Plant Diversity and Public Health. Springer, Cham. https://doi.org/10.1007/978-3-031-21944-3_3

Download citation

Publish with us

Policies and ethics