Skip to main content

Biosurfactants as Potential Antitumor Agents

  • Chapter
  • First Online:
Advancements in Biosurfactants Research

Abstract

Tumors are a solid mass of tissue that forms from the clustering of numerous abnormal cells. Many tumors are benign (non-cancerous) while most are malignant (cancerous). One common thing about tumors is that whether malignant or benign, they require treatment. However, the treatment approach differs for both classes of tumors. Although both types of tumors can affect different body parts (such as bones, skin, tissue, organs, and glands), special attention is mostly given to cancerous or malignant tumors because they are life-threatening and require special treatment. Chemotherapy and irradiation are currently the conventional treatment strategies for malignant tumors, but the problems of drug resistance and toxicity associated with tumor chemotherapy are driving the continued search for novel biocompatible antitumor agents as advocated by the World Health Organization. In this regard, natural products have received much research attention as an alternative and effective option for tumor management. Biosurfactants are natural compounds biologically produced by some strains of bacteria with potential application in different fields. Biosurfactants have attracted medical attention as promising molecules due to their diverse properties, versatility, and structural novelty. The medical field witnessed an increased commercial application of biosurfactants during the past decade because they are highly biocompatible, biodegradable, and exhibit low toxicity. The antioxidant, antibacterial, antiproliferative, and antiviral activities of biosurfactants make them relevant molecules for the treatment of many diseases, including tumors. Many types of biosurfactants such as surfactin, iturin, and fengycin lipopeptide have been produced from several Bacillus species and studied for antitumor activity by several scholars against breast cancer, colon cancer, leukemia, hepatoma, etc. These biomolecules are believed to significantly inhibit the proliferation of multiple tumor types by interfering with some tumor development processes. This chapter reviewed most of the previous studies on biosurfactants and their antitumor activities, focusing more on their potential mechanisms of action and possible grounds for advanced applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalos A, Pinazo A, Infante MR, Casals M, García F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    Article  CAS  Google Scholar 

  • Alexander B, Zibek S (2020) Growth behavior of selected Ustilaginaceae fungi used for mannosylerythritol lipid (MEL) biosurfactant production–evaluation of a defined culture medium. Front Bioeng Biotechnol 8:555280. https://doi.org/10.3389/fbioe.2020.555280

    Article  Google Scholar 

  • Amanda K, Anna W, Alexis Q, Christine D, Richard G (2017) Influence of sophorolipid structure on interfacial properties of aqueous-Arabian light crude and related constituent emulsions. J Am Oil Chem Soc 94:107–119

    Article  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptide-lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  Google Scholar 

  • Arutchelvi J, Doble M (2010) Mannosylerythritol lipids: microbial production and their applications. In: Soberón-Chávez G (ed) Biosurfactants: from genes to applications. Springer, Berlin, pp 145–177

    Google Scholar 

  • Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Anton Leeuw Int J G 85:1–8

    Article  CAS  Google Scholar 

  • Bonmatin JM, Laprevote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556

    Article  CAS  Google Scholar 

  • Byeon SE, Lee YG, Kim BH, Shen T, Lee SY, Park HJ, Park SC, Rhee MH, Cho J (2008) Surfactin blocks NO production in lipopolysaccharide-activated macrophages by inhibiting NF-κB activation. Microbiol Biotechnol 18:1984–1989

    Google Scholar 

  • Cameotra SS, Makkar R (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  CAS  Google Scholar 

  • Cao XH, Wang AH, Wang CL, Mao DZ, Lu MF, Cui YQ, Jiao R (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362

    Article  CAS  Google Scholar 

  • Cao XH, Zhao SS, Liu DY, Wang Z, Niu LL, Hou LH, Wang C (2011) ROS-Ca(2+) is associated with mitochondria permeability transition pore involved in surfactininduced MCF-7 cells apoptosis. Chem Biol Interact 190(1):16–27

    Article  CAS  Google Scholar 

  • Chen J, Song X, Zhang H, Qu Y, Miao J (2006) Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Appl Microbiol Biotechnol 72:52–59

    Article  CAS  Google Scholar 

  • Chung YR, Kim CH, Hwang I, Chun J (2000) Paenibacillus koreensis sp. nov. A new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. Appl Microbiol 104:1675–1684

    Article  CAS  Google Scholar 

  • Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94:2667–2679

    Article  CAS  Google Scholar 

  • Donadio S, Monciardini P, Alduina R, Mazza P, Chiocchini C, Cavaletti L, Sosio M, Puglia AM (2002) Microbial technologies for the discovery of novel bioactive metabolite. J Biotechnol 99:187–198

    Article  CAS  Google Scholar 

  • Fracchia L, Cavallo M, Martinotti MG, Banat I (2012) Biosurfactants and bioemulsifiers biomedical and related applications—present status and future potentials. In: Ghista DN (ed) Biomedical science engineering and technology, IntechOpen, pp 325–370

    Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat I (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112:617–627

    Article  CAS  Google Scholar 

  • Fu SL, Wallner SR, Bowne WB, Hagler MD, Zenilman ME, Gross R, Bluth MH (2008) Sophorolipids and their derivatives are lethal against human pancreatic cancer cells. J Surg Res 148:77–82

    Article  CAS  Google Scholar 

  • Gudiña EJ, Rangarajan R, Sen R, Rodrigues L (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 34:667–675

    Article  Google Scholar 

  • Hancock REW, Chapple D (1999) Pepedide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    Article  CAS  Google Scholar 

  • Horowitz S, Gilbert JN, Griffin W (1990) Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J Ind Microbiol Biotechnol 6(4):243–248

    CAS  Google Scholar 

  • Huang X, Lu Z, Zhao H, Bie X, Lü FX, Yang S (2006) Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, newcastle disease virus and infectious bursal disease virus in vitro. Int J Pept Res Ther 12:373–377

    Article  Google Scholar 

  • Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62(1):1–21. https://doi.org/10.1016/j.seppur.2007.12.011

    Article  CAS  Google Scholar 

  • Huang X, Suo J, Cui Y (2011) Optimization of antimicrobial activity of surfactin and polylysine against Salmonella enteritidis in milk evaluated by a response surface methodology. Foodborne Pathog Dis 8(3):439–443

    Article  CAS  Google Scholar 

  • Im J, Nakane T, Yanagishita H (2001) Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G. BMC Biotechnol 1:5

    Article  CAS  Google Scholar 

  • Im JH, Yanagishita H, Ikegami T (2003) Mannosylerythritol lipids, yeast glycolipid biosurfactants, are potential affinity ligand materials for human immunoglobulin G. J Biomed Mater Res A 65:379–385

    Article  Google Scholar 

  • Inoh Y, Kitamoto D, Hirashima N (2001) Biosurfactants of MEL-A increase gene transfection mediated by cationic liposomes. Biochem Biophys Res Commun 289:57–61

    Article  CAS  Google Scholar 

  • Inoh Y, Kitamoto D, Hirashima N (2004) Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. J Control Release 94:423–431

    Article  CAS  Google Scholar 

  • Isoda H, Kitamoto D, Shinmoto H (1997) Microbial extracellular glycolipid induction of differentiation and inhibition of protein kinase C activity of human promyelocytic leukaemia cell line HL60. Biosci Biotechnol Biochem 61:609–614

    Article  CAS  Google Scholar 

  • Joshi-Navare K, Shiras A, Prabhune A (2011) Differentiation-inducing ability of sophorolipids of oleic and linoleic acids using a glioma cell line. Biotechnol J 6:509–512

    Article  CAS  Google Scholar 

  • Jung M, Lee S, Kim H (2000) Recent studies on natural products as anti-HIV agents. Curr Med Chem 7:649–661

    Article  CAS  Google Scholar 

  • Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala VR, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution—a review. Petroleum 4(3):241–249

    Article  Google Scholar 

  • Kikuchi T, Hasumi K (2002) Enhancement of plasminogen activation by surfactin C: augmentation of fibrinolysis in vitro and in vivo. Biochim Biophys Acta 1596:234–245

    Article  CAS  Google Scholar 

  • Kim K, Jung SY, Lee D (1998) Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem Pharmacol 55:975–985

    Article  CAS  Google Scholar 

  • Kim K, Yoo D, Kim Y, Lee B, Shin D, Kim E-K (2002) Characteristics sophorolipid as an antimicrobial agent. J Microbiol Biotechnol 12:235–241

    CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Shinbo T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29:91–96

    Article  CAS  Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants—from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201

    Article  CAS  Google Scholar 

  • Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Microbiol Rev 21:449–465

    Article  CAS  Google Scholar 

  • Lang S, Philp J (1998) Surface-active lipids in Rhodococci. Anton Leeuw Int J G 74:59–57

    Article  CAS  Google Scholar 

  • Lee JH, Nam SH, Seo WT, Yun HD, Hong SY, Kim MK, Cho K (2012) The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells. Food Chem 131:1347–1354

    Article  CAS  Google Scholar 

  • Lu JR, Zhao XB, Yaseen M (2007) Biomimetic amphiphiles: biosurfactants. Curr Opin Colloid Interface Sci 12:60–67

    Article  CAS  Google Scholar 

  • Marchant R, Banat I (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565

    Article  CAS  Google Scholar 

  • Matsuyama T, Tanikawa T, Nakagawa Y (2010) Serrawettins and other surfactants produced by Serratia. In: Soberón-Chávez G (ed) Biosurfactants: from genes to applications. Springer, Berlin, pp 93–120

    Google Scholar 

  • Mimee B, Labbé C, Pelletier R, Bélanger R (2005) Antifungal activity of flocculosin, a novel glycolipid isolated from Pseudozyma flocculosa. Antimicrob Agents Chemother 49:1597–1599

    Article  CAS  Google Scholar 

  • Mimee B, Pelletier R, Bélanger R (2009) In vitro antibacterial activity and antifungal mode of action of flocculosin, a membrane-active cellobiose lipid. Appl Microbiol 107:989–996

    Article  CAS  Google Scholar 

  • Mireles JR, Toguchi A, Harshey R (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    Article  CAS  Google Scholar 

  • Morikawa M, Ito M, Imanaka T (1992) Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1. J Ferment Bioeng 74:255–261

    Article  CAS  Google Scholar 

  • Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics: production, isolation, chemical properties, structure and biological activity. J Antibiot (Tokyo) 43:267–280

    Article  CAS  Google Scholar 

  • Nawale L, Dubey P, Chaudhari B, Sarkar D, Prabhune A (2017) Anti-proliferative effect of novel primary cetyl alcohol derived sophorolipids against human cervical cancer cells HeLa. PLoS One 12:e0174241

    Article  Google Scholar 

  • Nereus WG, Alberto N, Laurie FS, Daniel S (2006) Proteomic based investigation of rhamnolipid production by Pseudomonas chlororaphis strain NRRL B-30761. J Ind Microbiol Biotechnol 33(11):914–920

    Article  Google Scholar 

  • Nguyen TT, Sabatini D (2009) Formulating alcohol-free microemulsions using rhamnolipid biosurfactant and rhamnolipid mixtures. J Surfactant Deterg 12:109–115

    Article  CAS  Google Scholar 

  • Nitschke M, Costa SG, Contiero J (2010) Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl Biochem Biotechnol 160(7):2066–2074

    Article  CAS  Google Scholar 

  • Ortiz A, Teruel JA, Espuny MJ, Marqués A, Manresa Á, Aranda F (2008) Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim Biophys Acta 1778:2806–2813

    Article  CAS  Google Scholar 

  • Osada H (1998) Bioprobe for investigating mammlian cell cycles control. J Antibiot 51:973–982

    Article  CAS  Google Scholar 

  • Otto RT, Daniel H-J, Pekin G (1999) Production of sophorolipids from whey. II. Product composition, surface active properties, cytotoxicity and stability against hydrolases by enzymatic treatment. Appl Microbiol Biotechnol 52:495–501

    Article  CAS  Google Scholar 

  • Palanisamy P, Raichur A (2009) Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater Sci Eng C 29:199–120

    Article  CAS  Google Scholar 

  • Park SY, Kim YH, Kim EK, Ryu EY, Lee S (2010) Heme oxygenase-1 signals are involved in preferential inhibition of pro-inflammatory cytokine release by surfactin in cells activated with Porphyromonas gingivalis lipopolysaccharide. Chem Biol Interact 188:437–445

    Article  CAS  Google Scholar 

  • Peele KA, Ch VR (2016) Emulsifying activity of a biosurfactant produced by a marine bacterium. 3 Biotech 16(2):177

    Article  Google Scholar 

  • Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermotolerant hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. J Appl Microbiol 75:132–138

    Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  CAS  Google Scholar 

  • Raza ZA, Khalid ZM, Banat IM (2009) Characterization of rhamnolipids produced by a Pseudomonas aeruginosa mutant strain grown on waste oils. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:1367–1373

    Article  CAS  Google Scholar 

  • Redhead SA, Vilgalys R, Moncalvo J-M, Johnson J, Hopple JS Jr (2001) Coprinus Pers. and the disposition of Coprinus species sensu lato. Taxon 50(1):20(1), 203–20(1), 204

    Article  Google Scholar 

  • Remichkova M, Galabova D, Roeva I, Karpenko E, Shulga A, Galabov A (2008) Antiherpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and its complex with alginate. Z Naturforsch C 63:75–81

    Article  CAS  Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553

    Article  CAS  Google Scholar 

  • Rodrigues LR (2011) Inhibition of bacterial adhesion on medical devices. In: Linke D, Goldman A (eds) Bacterial adhesion: biology, chemistry, and physics, Advances in experimental. Medicine and biology. Springer, Berlin, pp 351–367

    Chapter  Google Scholar 

  • Rodrigues LR, Teixeira J (2010) Biomedical and therapeutic applications of biosurfactants. Adv Exp Med Biol 672:75–87

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron E (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  CAS  Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick D (1979) Emulsifier of Arthrobacter RAG-1:isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    Article  CAS  Google Scholar 

  • Saini HS, Barragán-Huerta BE, Lebrón-Paler A, Pemberton JE, Vázquez RR, Burns AM, Marron MT, Seliga CJ, Gunatilaka AA, Maier R (2008) Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9-3 and its physicochemical and biological properties. J Nat Prod 71:1011–1010

    Article  CAS  Google Scholar 

  • Selvam R, Maheswari P, Kavitha P, Ravichandran M, Sas B, Ramchand C (2009) Effect of Bacillus subtilis PB6, a natural probiotic on colon mucosal inflammation and plasma cytokines levels in inflammatory bowel disease. Indian J Biochem Biophys 46:79–85

    CAS  Google Scholar 

  • Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133

    Google Scholar 

  • Shah V, Doncel GF, Seyoum T, Eaton KM, Zalenskaya I, Hagver R, Azim A, Gross R (2005) Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrob Agents Chemother 49:4093–4041

    Article  CAS  Google Scholar 

  • Shaligram NS, Singhal R (2010) Surfactin—a review, on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48:119–134

    CAS  Google Scholar 

  • Singh P, Cameotra S (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  CAS  Google Scholar 

  • Sivapathasekaran C, Das P, Mukherjee S, Saravanakumar J, Mandal M, Sen R (2010) Marine bacterium derived lipopeptides: characterization and cytotoxic activity against cancer cell lines. Int J Pept Res Ther 16:215–222

    Article  CAS  Google Scholar 

  • Smyth TJP, Perfumo A, McClean S, Marchant R, Banat IM (2010) Isolation and analysis of lipopeptides and high molecular weight biosurfactants. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 3689–3704

    Google Scholar 

  • Sotirova AV, Spasova DI, Galabova DN, Karpenko E, Shulga A (2008) Rhamnolipid–biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr Microbiol 56:639–644

    Article  CAS  Google Scholar 

  • Sudo T, Zhao X, Wakamatsu Y (2000) Induction of the differentiation of human HL-60 promyelocytic leukemia cell line by succinoyl trehalose lipids. Cytotechnology 33:259–264

    Article  CAS  Google Scholar 

  • Symmank H, Franke P, Saenger W (2002) Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Eng 15:913–921

    Article  CAS  Google Scholar 

  • Tanaka Y, Tojo T, Uchida K, Uno J, Uchida Y, Shida O (1997) Method of producing iturin A and antifungal agent for profound mycosis. Biotechnol Adv 15:234–235

    Article  Google Scholar 

  • Tang JS, Zhao F, Gao H, Dai Y, Yao ZH, Hong K, Li J, Ye WC, Yao X-S (2010) Characterization and online detection of surfactin isomers based on HPLC-MSn analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF-α and IL-6 in LPS-induced macrophages. Mar Drugs 8:2605–2618

    Article  CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Effect of biosurfactant and fertilizer on biodegradation of crude oil by maring isolates of Bacillus megaterium and Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresour Technol 102:772–778

    Article  CAS  Google Scholar 

  • Van Bogaert INA, Soetaert W (2010) Sophorolipids. In: Soberón-Chávez G (ed) Biosurfactants: from genes to applications. Springer, Heidelberg, pp 79–210

    Google Scholar 

  • Van Bogaert INA, Saerens K, De Muynck C, Develter D, Wim S, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34

    Article  Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin–a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo) 39:888–901

    Article  CAS  Google Scholar 

  • Velraeds MM, Van de Belt-Gritter B, Van der Mei HC, Reid G, Busscher HJ (1998) Interference in initial adhesion of uropathogenic bacteria and yeasts to silicone rubber by a Lactobacillus acidophilus biosurfactant. J Med Microbiol 47:1081–1085

    Article  CAS  Google Scholar 

  • Vollenbroich D, Ozel M, Vater J (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297

    Article  CAS  Google Scholar 

  • Wakamatsu Y, Zhao X, Jin C (2001) Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade. Eur J Biochem 268:374–383

    Article  CAS  Google Scholar 

  • Xie Y, Ye R, Liu H (2006) Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf A Physicochem Eng Asp 279:175–178

    Article  CAS  Google Scholar 

  • Zaragoza A, Aranda FJ, Espuny MJ, Teruel JA, Marqués A, Manresa Á, Ortiz A (2009) Mechanism of membrane permeabilization by a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp. Langmuir 25:7892–7898

    Article  CAS  Google Scholar 

  • Zhao X, Wakamatsu Y, Shibahara M (1999) Mannosylerythritol lipid is a potent inducer of apoptosis and differentiation of mouse melanoma cells in culture. Cancer Res 59:482–486

    CAS  Google Scholar 

  • Zhao X, Geltinger C, Kishikawa S (2000) Tretament of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritol lipid-induced growth arrest and apoptosis. Cytotechnology 33:123–130

    Article  CAS  Google Scholar 

  • Zhao H, Yan L, Xu X, Jiang C, Shi J, Zhang Y, Liu L, Lei S et al (2018) Potential of Bacillus subtilis lipopeptides in anti-cancer I: induction of apoptosis and paraptosis and inhibition of autophagy in K562 cells. AMB Express 8:78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ukaegbu, C.I., Shah, S.R., Alara, R.O., Thonda, O.A. (2023). Biosurfactants as Potential Antitumor Agents. In: Aslam, R., Mobin, M., Aslam, J., Zehra, S. (eds) Advancements in Biosurfactants Research. Springer, Cham. https://doi.org/10.1007/978-3-031-21682-4_20

Download citation

Publish with us

Policies and ethics