Skip to main content

The Role of Biosurfactants in Biofuel Production

  • Chapter
  • First Online:
Advancements in Biosurfactants Research
  • 474 Accesses

Abstract

Enormous demands for energy, dwindling fossil fuel, and associated pollution among others have propelled efforts toward search for an alternative energy source. Biofuel has been viewed as a viable energy source in this regard. A set of stages were followed in the creation of biofuel from biomass or any other biological entity. The use of microorganisms in this case cannot be overemphasized. Amphiphilic microbial compounds are the biosurfactants that split at the interfaces of hydrophilic, and are secreted always by microorganisms through extracellular exudation. Pseudomonas aeruginosa produces high biosurfactant action. Biosurfactants produced by P. aeruginosa have unique enzymatic hydrolysis potential in the production of biofuel from biomass. Pseudomonas aeruginosa biosurfactants include rhamnolipid with a rapid outcome in lowering interfacial pressure of substrates and its surface tension. Rhamnolipid is biodegradable with insignificant toxicity, making it ideal for biofuel generation. The classification of biosurfactants was shown. Rhamnolipid from P. aeruginosa is used in biofuel production, and its quality and significance through unique and inimitable enzymatic hydrolysis potential for full oil recovery is enhance sustainable energy supply. Thus, this chapter reveals huge potential on the use of biosurfactants for the synthesis of biofuel to replace the fossil fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaziz AEM, Leite GB, Hallenbeck PC (2013) Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. Environ Technol 34:1807–1836

    Article  CAS  Google Scholar 

  • Adamczak M, Bednarski W (2000) Influence of medium composition and aeration on the synthesis of biosurfactants produced by Candida Antarctica. Biotechnol Lett 22:313–316. https://doi.org/10.1023/A:1005634802997

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Nagata T (2009) Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem Photobiol Sci 8:148–156

    Article  CAS  Google Scholar 

  • Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B (2014) Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf B Biointerfaces 114:324–333. https://doi.org/10.1016/j.colsurfb.2013.09.022

    Article  CAS  Google Scholar 

  • Bhat RA, Singh DV, Tonelli FMP, Hakeem KR (2022) Plant and Algae Biomass. Springer, Cham

    Book  Google Scholar 

  • Cadenas A, Cabezudo S (1998) Biofuels as sustainable technologies: perspectives for less developed countries. Technol Forecast Soc Change 58:83–103

    Article  Google Scholar 

  • Campos JM, Montenegro Stamford TL, Sarubbo LA, de Luna JM, Rufino RD, Banat IM (2013) Microbial biosurfactants as additives for food industries. Biotechnol Prog 29:1097–1108. https://doi.org/10.1002/btpr.1796

    Article  CAS  Google Scholar 

  • Carlsson AS, van Beilen JB, Meoller R, Clayton D (2007) In: Bowles D (ed) Micro- and macro-algae: utility for industrial applications, outputs from the EPOBIO project. University of York: CPL Press, Newbury, pp 1–82

    Google Scholar 

  • Cheng D, He Q (2014) Assessment of environmental stresses for enhanced microalgal biofuel production—an overview. Front Energy Res 2014(2):26. https://doi.org/10.3389/fenrg.2014.00026

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:249–306

    Article  Google Scholar 

  • Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Factories 16:137. https://doi.org/10.1186/s12934-017-0753-2

    Article  CAS  Google Scholar 

  • Chong ML, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34:3277–3287

    Article  CAS  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of Liposan, Candida lipolyticat a bioemulsifier from. Microbiology 50:846–850. https://doi.org/10.1128/AEM.50.4.846-850.1985

    Article  CAS  Google Scholar 

  • Coronel-León J, Marqués AM, Bastida J, Manresa A (2016) Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. J Appl Microbiol 120:99–111. https://doi.org/10.1111/jam.12992

    Article  CAS  Google Scholar 

  • Das D (2015) Introduction. In: Das D (ed) Algal biorefinery: an integrated approach. Springer, Cham, pp 1–34

    Chapter  Google Scholar 

  • De Bruijn I, Raaijmakers JM (2009) Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens. Appl Environ Microbiol 75:4753–4761. https://doi.org/10.1128/AEM.00575-09

    Article  CAS  Google Scholar 

  • De Mello Luvielmo M, Borges CD, Toyama D d O, Vendruscolo CT, Scamparini ARP (2016) Structure of xanthan gum and cell ultrastructure at different times of alkali stress. Brazil J Microbiol 47:102–109. https://doi.org/10.1016/j.bjm.2015.11.006

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:108–117

    Article  Google Scholar 

  • Dias MOS, Ensinas AV, Nebra SA, Filho RM, Rossell CEV, Maciel MRW (2009) Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87:1206–1216

    Article  CAS  Google Scholar 

  • Dragone G, Fernande B, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 1355–1366

    Google Scholar 

  • Funston SJ, Tsaousi K, Rudden M, Smyth TJ, Stevenson PS, Marchant R (2016) Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Appl Microbiol Biotechnol 100:7945–7956. https://doi.org/10.1007/s00253-016-7564-y

    Article  CAS  Google Scholar 

  • Gerpen V (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  Google Scholar 

  • Ghirardi ML, Dubini A, Yu J, Maness PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61

    Article  CAS  Google Scholar 

  • Gronenberg LS, Marcheschi RJ, Liao JC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17:462–471

    Article  CAS  Google Scholar 

  • Guwy AJ, Dinsdale RM, Kim JR, Massanet-Nicolau J, Premier G (2011) Fermentative biohydrogen production systems integration. Bioresour Technol 102:8534–8542

    Article  CAS  Google Scholar 

  • Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522

    Article  CAS  Google Scholar 

  • Hay JXW, Wu TY, Juan JC, Jahim JM (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod Biorefin 07:334–352

    Article  CAS  Google Scholar 

  • Heiman K (2016) Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production. Curr Opin Biotechnol 38:183–189

    Article  Google Scholar 

  • Inès M, Dhouha G (2015) Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 71:100–112. https://doi.org/10.1016/j.peptides.2015.07.006

    Article  CAS  Google Scholar 

  • Jerald AL et al (2016) Biofuels production from renewable feedstocks. In: Quality living through chemurgy and green chemistry. Springer, Berlin, pp 193–220. https://doi.org/10.1007/978-3-662-53704-6_8. https://www.researchgate.net/publication/313085412

    Chapter  Google Scholar 

  • Joshi SJ, Geetha SJ, Desai AJ (2015) Characterization and application of biosurfactant produced by Bacillus licheniformis R2. Appl Biochem Biotechnol 177:346–361. https://doi.org/10.1007/s12010-015-1746-4

    Article  CAS  Google Scholar 

  • Kang Y, Li P, Zeng X, Chen X, Xie Y, Zeng Y (2019) Biosynthesis, structure and antioxidant activities of xanthan gum from Xanthomonas campestris with additional furfural. Carbohydr Polym 216:369–375. https://doi.org/10.1016/j.carbpol.2019.04.018

    Article  CAS  Google Scholar 

  • Kaur V, Bera MB, Panesar PS, Kumar H, Kennedy JF (2014) Welan gum: microbial production, characterization, and applications. Int J Biol Macromol 65:454–461. https://doi.org/10.1016/j.ijbiomac.2014.01.061

    Article  CAS  Google Scholar 

  • Khan S, Rashmi A, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13:2361–2372

    Article  CAS  Google Scholar 

  • Kuppuswami GM (2014) Fermentation (Industrial): production of xanthan gum, 2nd edn. Central Leather Research Institute, Adyar. https://doi.org/10.1016/B978-0-12-384730-0.00110-5

    Book  Google Scholar 

  • Kurtzman CP, Price NPJ, Ray KJ, Kuo TM (2010) Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 311:140–146. https://doi.org/10.1111/j.1574-6968.2010.02082.x

    Article  CAS  Google Scholar 

  • Laycock MV, Thibault P, Walter JA, Wright JLC, Hildebrand PD (1991) Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J Agric Food Chem 39:483–489. https://doi.org/10.1021/jf00003a011

    Article  CAS  Google Scholar 

  • Li H, Jiao X, Sun Y, Sun S, Feng Z, Zhou W (2016) The preparation and characterization of a novel sphingan WL from marine Sphingomonas sp. WG Sci Rep 6:37899. https://doi.org/10.1038/srep37899

    Article  CAS  Google Scholar 

  • Liu JF, Mbadinga SM, Yang SZ, Gu JD, Mu BZ (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16:4814–4837. https://doi.org/10.3390/ijms16034814

    Article  CAS  Google Scholar 

  • Lynch S, Eckert C, Yu J, Gill R, Maness PC (2016) Overcoming substrate limitations for improved production of ethylene in E. coli. Biotechnol Biofuels 9:3

    Article  Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97:4691–4700. https://doi.org/10.1007/s00253-013-4858-1

    Article  CAS  Google Scholar 

  • Mustafa CT, Zehra DÇ (2017) The importance of energy sources in the prevention of environmental pollution. Int J English Lit Soc Sci (IJELS) 2(4):2456–7620. https://doi.org/10.24001/ijels.2.4.9. ISSN: 2456-7620

    Article  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ et al (1995) Alasan, a new bioemulsifier from acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244. https://doi.org/10.1128/AEM.61.9.3240-3244.1995

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Nikolova C, Gutierrez T (2021) Biosurfactants and their applications in the oil and gas industry: current state of knowledge and future perspectives. Front Bioeng Biotechnol 9:626639. https://doi.org/10.3389/fbioe.2021.626639

    Article  Google Scholar 

  • Niu Y, Wu J, Wang W, Chen Q (2019) Production and characterization of a new glycolipid, mannosylerythritol lipid, from waste cooking oil biotransformation by Pseudozyma aphidis ZJUDM34. Food Sci Nutr 7:937–948. https://doi.org/10.1002/fsn3.880

    Article  CAS  Google Scholar 

  • Oey M, Sawyer AL, Ross IL, Hankamer B (2015) Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J 14:1487. https://doi.org/10.1111/pbi.12516

    Article  CAS  Google Scholar 

  • Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611. https://doi.org/10.1111/j.1365-2672.2006.03267.x

    Article  CAS  Google Scholar 

  • Pinto FAL, Troshima O, Lindbald P (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrog Energy 27:1209–1215

    Article  Google Scholar 

  • Poudyal RS, Tiwari I, Najafpour MM, Los DA, Carpentier R, Shen JR (2015) Current insights to enhance hydrogen production by photosynthetic organisms. In: Stolten D, Emonts B (eds) Hydrogen science and engineering. Wiley-VCH Books, Weinheim, pp 461–487

    Google Scholar 

  • Prajapati VD, Jani GK, Zala BS, Khutliwala TA (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93:670–678. https://doi.org/10.1016/j.carbpol.2013.01.030

    Article  CAS  Google Scholar 

  • Raja SA, Robinson smart DS, Lee CLR (2011) Biodiesel production from Jatropha oil and its characterization. Res J Chem Sci 01:81–87

    Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, waste water treatment and biofuel production by microalgae culturing—a review. Renew Sust Energ Rev 27:622–653

    Article  CAS  Google Scholar 

  • Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA (2017) Biofuel production: challenges and opportunities. Int J Hydrog Energy 42:8450. https://doi.org/10.1016/j.ijhydene.2016.11.125

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162. https://doi.org/10.1007/s002530051502

    Article  CAS  Google Scholar 

  • Roy S, Das D (2015a) Gaseous fuels production from algal biomass. In: Das D (ed) Algal biorefinery: an integrated approach. Springer, Cham, pp 297–319

    Chapter  Google Scholar 

  • Roy S, Das D (2015b) Liquid fuels production from algal biomass. In: Das D (ed) Algal biorefinery: an integrated approach. Springer, Cham, pp 277–296

    Chapter  Google Scholar 

  • Santos DKF, Resende AHM, Almeida DGDE, Rita D, Silva S, Rufino RD (2017) Candida lipolytica UCP0988 biosurfactant: potential as a bioremediation agent and in formulating a commercial related product. Front Microbiol 8:767. https://doi.org/10.3389/fmicb.2017.00767

    Article  Google Scholar 

  • Sari CN, Fatimah IN, Hertadi RH, Gozan M (2019) Processing of ozonized biodiesel waste to produce biosurfactant using Pseudomonas aeruginosa for enhanced oil recovery. AIP Conference Proceedings 2085:020054. https://doi.org/10.1063/1.5095032

    Article  CAS  Google Scholar 

  • Schenk PMM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Res 01:20–43

    Article  Google Scholar 

  • Schultheis E, Dreger MA, Nimtz M, Wray V, Hempel DC, Nörtemann B (2008) Structural characterization of the exopolysaccharide PS-EDIV from Sphingomonas pituitosa strain DSM 13101. Appl Microbiol Biotechnol 78:1017–1024. https://doi.org/10.1007/s00253-008-1383-8

    Article  CAS  Google Scholar 

  • Seibert M (2009) Applied photosynthesis for biofuels production. In: Smith KC (ed) Photobiological sciences online. American Society for Photobiology, Albuquerque, NM. http://www.photobiology.info/Seibert.html#TOP

    Google Scholar 

  • Shah YR, Sen DJ (2011) Bioalcohol as green energy—a review. Int J Cur Sci Res 01:57–62

    Google Scholar 

  • Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Article  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    Article  CAS  Google Scholar 

  • Tripathi L, Twigg MS, Zompra A, Salek K, Irorere VU, Gutierrez T (2019) Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora. Microb Cell Factories 18:1–12. https://doi.org/10.1186/s12934-019-1216-8

    Article  CAS  Google Scholar 

  • Toren A, Navon-Venezia S, Ron EZ, Rosenberg E (2001) Emulsifying activities of purified alasan proteins from Acinetobacter radioresistens KA53. Appl Environ Microbiol 67:1102–1106. https://doi.org/10.1128/AEM.67.3.1102-1106.2001

    Article  CAS  Google Scholar 

  • Twigg MS, Tripathi L, Zompra A, Salek K, Irorere VU, Gutierrez T et al (2018) Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad. Appl Microbiol Biotechnol 102:8537–8549. https://doi.org/10.1007/s00253-018-9202-3

    Article  CAS  Google Scholar 

  • Uzoigwe C, Burgess JG, Ennis CJ, Rahman PKSM (2015) Bioemulsifiers are not biosurfactants and require different screening approaches. Front Microbiol 6:245. https://doi.org/10.3389/fmicb.2015.00245

    Article  Google Scholar 

  • Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34. https://doi.org/10.1007/s00253-007-0988-7

    Article  CAS  Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39:888–901. https://doi.org/10.7164/antibiotics.39.888

    Article  CAS  Google Scholar 

  • Voloshin RA, Kreslavski VD, Zharmukhamedov SK, Bedbenov VS, Ramakrishna S, Allakhverdiev SI (2015) Photoelectrochemical cells based on photosynthetic systems: a review. Biofuel Res J 6:227–235

    Article  Google Scholar 

  • Voloshin RA, Rodionova MV, Zharmukhamedov SK, Veziroglu TN, Allakhverdiev SI (2016) Review: biofuel production from plant and algal biomass. Int J Hydrog Energy 41:17257–17273

    Article  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713. https://doi.org/10.1128/AEM.61.5.1706-1713.19

    Article  CAS  Google Scholar 

  • Yeole SD, Aglave BA, Lokhande MO (2009) Algaeoleum—a third generation biofuel. Asian J Bio Sci 4:344–347

    Google Scholar 

  • Zhang S, Liu Y, Bryant DA (2015) Metabolic engineering of Synechococcus sp. PCC 7002 to produce poly-3- hydroxybutyrate and poly-3-hydroxybutyrate-co-4- hydroxybutyrate. Metab Eng 32:174–183

    Article  CAS  Google Scholar 

  • Zhang X, Rong J, Chen H, He C, Wang Q (2014) Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Front Energy Res 2:32. https://doi.org/10.3389/fenrg.2014.00032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Oyetunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oyetunji, O.E., Kotun, B.C., Thonda, O.A., Ademola, E.A. (2023). The Role of Biosurfactants in Biofuel Production. In: Aslam, R., Mobin, M., Aslam, J., Zehra, S. (eds) Advancements in Biosurfactants Research. Springer, Cham. https://doi.org/10.1007/978-3-031-21682-4_18

Download citation

Publish with us

Policies and ethics