Skip to main content

Ecological Impacts and Toxicity of Micro- and Nanoplastics in Agroecosystem

  • Chapter
  • First Online:
Micro and Nanoplastics in Soil

Abstract

Micro- and nanoplastics are fragments of small plastics that are of sizes 1–5000 microns and <1 μm and consist of carbon and hydrogen atoms chained together by polymer. Micro- and nanoplastics are environmental pollutants, and their degradation depends on the properties of plastics, soil type, environmental condition, and microbial community. Their presence in the agricultural system is an emerging concern, which is basically attributed to the ability of the plastics to penetrate the soil and contaminate the soil plants, and microflora and fauna which thereby affect the food chain and security. Micro- and nanoplastics pollution in agrosystems originates from human activities (agricultural practices and anthropogenic sources) and natural sources (atmospheric inputs and flooding). Micro- and nanoplastics contamination of soil plants alters the chemical, physical, and biological properties of the soil ecosystem due to increased adsorption capacity when in combination with another organic contaminant. In agricultural ecosystems, micro- and nanoplastics affect soil microbial activity, microbial biomass, functional diversity, and the cycling process of plant nutrient elements in the soil, which have an indirect effect on plant seed germination and growth. When ingested or in association with the soil biota, micro- and nanoplastics can influence the agro-functionality through effects on soil root-associated microbiome and root symbionts, soil structure, nutrient immobilization, contaminant adsorption, and diffusion which can directly impact the fertility of the agricultural soil, plant qualities, and its yield. Microplastics excessive accumulation can directly result in toxic risk effects, including the interruption of the nutrient transport system by the obstruction of the pores in the cell wall, alter the community diversity, activity of the soil biota, and inhibition of nitrification. Microplastics and nanoplastics contribute to a major distribution of toxic and harmful compounds to soil plants, soil fauna, and photosynthetic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aarnio, T., & Hämäläinen, A. (2008). Challenges in packaging waste management in the fast-food industry. Resources, Conservation and Recycling, 52, 612–621. [CrossRef].

    Article  Google Scholar 

  • Abioye, O. P., Iroegbu, V. T., & Aransiola, S. A. (2015a). Biodegradation of methyl red by Staphylococcus aureus isolated from waste dump site. Journal of Environmental Science and Technology, 8, 131–138. https://doi.org/10.3923/jest.2015.131.138. https://scialert.net/fulltextmobile/?doi=jest.2015.131.138

    Article  CAS  Google Scholar 

  • Abioye, O. P., Adefisan, A. E., Aransiola, S. A., & Damisa, D. (2015b). Biosorption of chromium by Bacillus subtilis and Pseudomonas aeruginosa isolated from waste dump site. Expert Opinion on Environmental Biology, 4, 1. https://doi.org/10.4172/2325-9655.1000112. https://www.scitechnol.com/biosorption-of-chromium-by-bacillus-subtilis-and-pseudomonas-aeruginosa-isolated-from-waste-dump-site CNqL.php?article_id=2619

    Article  Google Scholar 

  • Abioye, O. P., Ijah, U. J. J., Aransiola, S. A., Auta, S. H., & Ojeba, M. I. (2021). Bioremediation of toxic pesticides in soil using microbial products. In R. Prasad, S. C. Nayak, R. N. Kharwar, & N. K. Dubey (Eds.), Mycoremediation and environmental sustainability (Fungal Biology). Springer. https://doi.org/10.1007/978-3-030-54422-5_1

    Chapter  Google Scholar 

  • Alimi, O. S., Farner, B. J., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments. Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52, 1704–1724.

    Article  CAS  Google Scholar 

  • Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29, 2625–2643. [CrossRef].

    Article  CAS  Google Scholar 

  • Aransiola, S. A., Ijah, U. J. J., & Abioye, O. P. (2013). Phytoremediation of lead polluted Soil by Glycine max L. Applied and Environmental Soil Science, 2013, 631619. https://doi.org/10.1155/2013/631619. https://www.hindawi.com/journals/aess/2013/631619/abs/

    Article  CAS  Google Scholar 

  • Aransiola, S. A., Ijah, U. J. J., Abioye, O. P., & Victor-Ekwebelem, M. O. (2021). ANAMMOX in wastewater treatment. In N. R. Maddela, L. C. García Cruzatty, & S. Chakraborty (Eds.), Advances in the domain of environmental biotechnology (Environmental and microbial biotechnology). Springer. https://doi.org/10.1007/978-981-15-8999-7_15

    Chapter  Google Scholar 

  • Atugoda, T., Vithanage, M., Wijesekara, H., Bolan, N., Sarmah, A. K., Bank M, You, S., & Ok, Y. S. (2021). Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment International, 149, 106367. https://doi.org/10.1016/j.envint.2020.106367

    Article  CAS  Google Scholar 

  • Auta, S. H., Abioye, O. P., Aransiola, S. A., Bala, J. D., Chukwuemeka, V. I., Hassan, A., Aziz, A., & Fauziah, S. H. (2022). Enhanced microbial degradation of PET and PS microplastics under natural conditions in mangrove environment. A critical review. Journal of Environmental Management, 304(2022), 114273. https://doi.org/10.1016/j.jenvman.2021.114273

    Article  CAS  Google Scholar 

  • Benedict, C. (2018). Biodegradable mulch breakdown in soil: Role of microbiology [Online]. Available: https://www.youtube.com/embed/-EqrF2y9lh0

  • Bloomberg News. (2017). Plastic film covering most of China’s farmland pollutes soil [Online]. Bloomberg News. Available: https://www.bloomberg.com/news/articles/2017-09-05/plastic film covering 12 of China farmland contaminates soil. Accessed 2 August 2018.

  • Bouwmeester, H., Hollman, P. C. H., & Peters, R. J. B. (2015). Potential health impact of environmentally released micro- and Nanoplastics in the human food production chain: Experiences from Nanotoxicology. Environmental Science & Technology, 49, 8932–8947.

    Article  CAS  Google Scholar 

  • Cao, D. D., Wang, X., Luo, X. X., Liu, G. C., & Zheng, H. (2017). Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conference Series: Earth and Environmental Science, 61, 012148.

    Google Scholar 

  • Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport, and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182. [CrossRef].

    Article  CAS  Google Scholar 

  • Castañeda, R. A., Avlijas, S., Simard, M. A., & Ricciardi, A. (2014). Microplastic pollution in St. Lawrence River sediments. Canadian Journal of Fisheries and Aquatic Sciences, 71, 1767–1771.

    Article  Google Scholar 

  • Chai, B., Wei, Q., She, Y., Lu, G., Dang, Z., & Yin, H. (2020). Soil microplastic pollution in an e-waste dismantling zone of China. Waste Management, 118, 291–301. https://doi.org/10.1016/j.wasman.2020.08.048

    Article  CAS  Google Scholar 

  • Dawson, A. L. (2018). Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nature Communications, 9, 1001.

    Article  Google Scholar 

  • de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. C. (2017). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24, 1405–1416.

    Article  Google Scholar 

  • de Souza Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., et al. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17), 9656–9665. https://doi.org/10.1021/acs.est.8b02212. [CrossRef].

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104, 290–293.

    Article  CAS  Google Scholar 

  • EFSA. (2016). Presence of microplastics and nano-plastics in food, with particular focus on seafood. EFSA Journal, 14(6), e04501.

    Google Scholar 

  • Ekvall, M. T. (2019). Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Advances, 1, 1055–1061.

    Article  CAS  Google Scholar 

  • European Bioplastics. (2021). Bioplastics facts and figures. Recycling, 6(12), 20–25. Available online: https://docs.european-bioplastics.org/publications/EUBP Facts and figures

    Google Scholar 

  • Fei, Y., Huang, S., Zhang, H., Tong, Y., Wen, D., Xia, X., et al. (2020). Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Science of The Total Environment, 707, 135634. https://doi.org/10.1016/j.scitotenv.2019.135634

    Article  CAS  Google Scholar 

  • Feng, Y., Cui, X., He, S., Dong, G., Chen, M., Wang, J., & Lin, X. (2013). The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environmental Science & Technology, 47, 9496–9504.

    Article  CAS  Google Scholar 

  • Fred-Ahmadu, O. H., Bhagwat, G., Oluyoye, I., Benson, N. U., Ayejuyo, O. O., & Palanisami, T. (2020). Interaction of chemical contaminants with microplastics: Principles and perspectives. Science of The Total Environment, 706, 135978. https://doi.org/10.1016/j.scitotenv.2019.135978

    Article  CAS  Google Scholar 

  • Frias, J., & Nash, R. (2018). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145–147.

    Article  Google Scholar 

  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3.7(2017), e1700782.

    Article  Google Scholar 

  • Gigault, J., El Hadri, H., Nguyen, B., Grassl, B., Rowenczyk, L., Tufenkji, N., Siyuan, F., & Wiesner, M. (2021). Nanoplastics are neither microplastics nor engineered nanoparticles. Nature Nanotechnology, 16, 501–507.

    Article  CAS  Google Scholar 

  • Gouin, T., Avalos, J., Brunning, I., Brzuska, K., de Graaf, J., Kaumanns, J., Koning, T., Meyberg, M., Rettinger, K., Schlatter, H., Thomas, J., van Welie, R., & Wolf, T. (2015). Use of micro-plastic beads in cosmetic products in Europe and their estimated emissions to the North Sea environment. International Journal for Applied Science., 141(4), 40–46.

    Google Scholar 

  • Guillard, V., Gaucel, S., Fornaciari, C., Angellier-Coussy, H., Buche, P., & Gontard, N. (2018). The next generation of sustainable food packaging to preserve our environment in a circular economy context. Frontiers in Nutrition, 5, 121. [CrossRef] [PubMed].

    Article  Google Scholar 

  • Hardy, A., Benford, D., Halldorsson, T., Jeger, M. J., Knutsen, H. K., More, S., Naegeli, H., Noteborn, H., Ockleford, C., Ricci, A., Rychen, G., Schlatter, J. R., Silano, V., Solecki, R., Turck, D., Younes, M., Chaudhry, Q., Cubadda, F., Gott, D., Oomen, A., Weigel, S., Karamitrou, M., Schoonjans, R., & Mortensen, A. (2018). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA Journal, 16(7), e05327. https://doi.org/10.2903/j.efsa.2018.5327

    Article  Google Scholar 

  • Henriques, I. D. S., & Lov, N. G. (2007). The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Research, 41, 4177–4185.

    Article  CAS  Google Scholar 

  • Hernandez, L. M. (2019). Plastic teabags release billions of microparticles and nanoparticles into tea. Environmental Science & Technology, 53, 12300–12310.

    Article  CAS  Google Scholar 

  • Hoellein, T. J., Shogren, A. J., Tank, J. L., Risteca, P., & Kelly, J. J. (2019). Microplastic deposition velocity in streams follows patterns for naturally occurring allochthonous particles. Scientific Reports, 9, 3740.

    Article  Google Scholar 

  • Horodytska, O., Cabanes, A., & Fullana, A. (2019). Plastic waste management: Current status and weaknesses. In F. Stock, G. Reifferscheid, N. Brennholt, & E. Kostianaia (Eds.), The handbook of environmental chemistry (pp. 1–18). Springer.

    Google Scholar 

  • Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141.

    Article  CAS  Google Scholar 

  • Huang, Y., Zhao, Y., Wang, J., Zhang, M., Jia, W., & Qin, X. (2019). LDPE microplastic films Alter microbial community composition and enzymatic activities in soil. Environmental Pollution, 254(PtA), 112983. https://doi.org/10.1016/j.envpol.2019.112983

    Article  CAS  Google Scholar 

  • Huerta Lwanga, E., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V., & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of the Total Environment, 624, 753–757.

    Article  CAS  Google Scholar 

  • Huerta, L. E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Besseling, E., Koelmans, A. A., & Geissen, V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220, 523–531.

    Article  Google Scholar 

  • Hurley, R. R., & Nizzetto, L. (2018). Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6–11. https://doi.org/10.1016/j.coesh.2017.10.006

    Article  Google Scholar 

  • Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., & Klobuˇcar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution, 250, 831–838.

    Article  CAS  Google Scholar 

  • Jing, H., Mezgebe, B., Aly Hassan, A., Sahle-Demessie, E., Sorial, G. A., & Bennett-Stamper, C. (2014). Experimental and modeling studies of sorption of ceria nanoparticle on microbial biofilms. Bioresource Technology, 161, 109–117.

    Article  CAS  Google Scholar 

  • Judy, J. D., Williams, M., Gregg, A., Oliver, D., Kumar, A., Kookana, R., & Kirby, J. K. (2019). Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environmental Pollution, 252, 522–531.

    Article  CAS  Google Scholar 

  • Kumar, G. M., Irshad, A., Raghunath, B., & Rajarajan, G. (2016). Waste management in food packaging industry. In Integrated waste management in India (pp. 265–277). Springer.

    Chapter  Google Scholar 

  • Lambert, S., & Wagner, M. (2016). Formation of microscopic particles during the degradation of diferent polymers. Chemosphere, 161, 510–517.

    Article  CAS  Google Scholar 

  • Lehmann, A., Leifheit, E. F., Gerdawischke, M., & Rillig, M. C. (2020). Microplastics have shape- and polymer-dependent effects on soil processes. BioRxiv, 12, 339–344. https://doi.org/10.1101/2020.06.02.130054

    Article  Google Scholar 

  • Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M., & Vethaak, A. D. (2017). Microplastics enroute: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International, 101, 133–142.

    Article  CAS  Google Scholar 

  • Li, M., Yu, H., Wang, Y., Li, J., Ma, G., & Wei, X. (2020). QSPR models for predicting the adsorption capacity for microplastics of polyethylene, polypropylene and polystyrene. Scientific Reports, 10, 14597.

    Article  CAS  Google Scholar 

  • Lim, X. (2021). Microplastics are everywhere, but are they harmful? Nature, 593, 22–25.

    Article  CAS  Google Scholar 

  • Lin, D., Yang, G., Dou, P., Qian, S., Zhao, L., Yang, Y., & Fanin, N. (2020). Data from: Microplastics negatively affect soil fauna but stimulate microbial activity: Insights from a field-based microplastic addition experiment. Dryad Digital Repository. https://doi.org/10.5061/dryad.1zcrjdfpw

  • Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., et al. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907–917. https://doi.org/10.1016/j.chemosphere.2017.07.064

    Article  CAS  Google Scholar 

  • Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Zhou, W., Cao, C., Shi, H., Yang, X., & He, D. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855–862.

    Article  CAS  Google Scholar 

  • Lozano, Y. M., Lehnert, T., Linck, L. T., Lehmann, A., & Rillig, M. C. (2021a). Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science, 12, 616645. https://doi.org/10.3389/fpls.2021.616645

    Article  Google Scholar 

  • Lozano, Y. M., Aguilar-Trigueros, C. A., Onandia, G., Maaß, S., Zhao, T., & Rillig, M. C. (2021b). Effects of microplastics and drought on soil ecosystem functions and multifunctionality. Journal of Applied Ecology, 58, 988–996. https://doi.org/10.1111/1365-2664.13839

    Article  CAS  Google Scholar 

  • Machado, A. A. S., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24, 1405–1401.

    Article  Google Scholar 

  • Mahon, A. M., O’Connell, B., Healy, M. G., O’Connor, I., Officer, R., Nash, R., & Morrison, L. (2017). Microplastics in sewage sludge: Effects of treatment. Environmental Science & Technology, 51, 810–818. [CrossRef].

    Article  CAS  Google Scholar 

  • Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2021). An overview of plastic waste generation and Management in Food Packaging Industries. Recycling, 6, 12. https://doi.org/10.3390/recycling6010012

    Article  Google Scholar 

  • Nizzetto, L., Futter, M., & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environmental Science & Technology, 50, 10777–10779.

    Article  CAS  Google Scholar 

  • Nortcliff, S. (2012). Definition, function, and utilization of soil. In Ullmann’s encyclopaedia of industrial chemistry (Vol. 33(1)). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.b07_613.pub3

    Chapter  Google Scholar 

  • Papadopoulou, E. L., Paul, U. C., Tran, T. N., Suarato, G., Ceseracciu, L., Marras, S., d’Arcy, R., & Athanassiou, A. (2019). Sustainable active food packaging from poly(lactic acid) and cocoa bean shells. Acs Applied Materials & Interfaces, 11, 31317–31327. [CrossRef] [PubMed].

    Article  CAS  Google Scholar 

  • Pathan, S. I., Arfaioli, P., Bardelli, T., Ceccherini, M. T., Nannipieri, P., & Pietramellara, G. (2020). Soil pollution from micro- and Nanoplastic debris: A hidden and unknown biohazard. Sustainability, 12, 7255. https://doi.org/10.3390/su12187255

    Article  CAS  Google Scholar 

  • Paul, M. B., Stock, V., Cara-Carmona, J., Lisicki, E., Shopova, S., Fessard, V., Braeuning, A., Sieg, H., & Bashert, L. (2020). Micro- and nanoplastics current state of knowledge with the focus on oral uptake and toxicity. Nanoscale Advances, 2(10), 4350–4367. https://doi.org/10.1039/d0na00539h

    Article  CAS  Google Scholar 

  • Payne, J., McKeown, P., & Jones, M. D. (2019). A circular economy approach to plastic waste. Polymer Degradation and Stability, 165, 170–181. [CrossRef].

    Article  CAS  Google Scholar 

  • Powell, J. R., & Rillig, M. C. (2018). Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 220, 1059–1075.

    Article  Google Scholar 

  • Qi, Y., Yang, X., Pelaez, A. M., Huerta Lwanga, E., Beriot, N., Gertsen, H., Garbeva, P., & Geissen, V. (2018). Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048–1056.

    Article  CAS  Google Scholar 

  • Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58. [CrossRef] [PubMed].

    Article  CAS  Google Scholar 

  • Rahimi, A., & García, J. M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1, 1–11. [CrossRef].

    Article  Google Scholar 

  • Rillig, M. C. (2012). Microplastic in terrestrial ecosystems and the soil. Environmental Science & Technology, 46, 6453–6454.

    Article  CAS  Google Scholar 

  • Rillig, M. C. (2018). Microplastic disguising as soil carbon storage. Environmental Science & Technology, 52, 6079–6080.

    Article  CAS  Google Scholar 

  • Rillig, M. C., & Bonkowski, M. (2018). Microplastic and soil protists: A call for research. Environmental Pollution, 241, 1128–1131.

    Article  CAS  Google Scholar 

  • Rillig, M. C., & Lehmann, A. (2020). Microplastic in terrestrial ecosystems. Science, 368(6498), 1430–1431. https://doi.org/10.1126/science.abb5979

    Article  CAS  Google Scholar 

  • Rillig, M. C., Ziersch, L., & Hempel, S. (2017a). Microplastic transport in soil by earthworms. Scientific Reports, 7, 1362.

    Article  Google Scholar 

  • Rillig, M. C., Muller, L. A. H., & Lehmann, A. (2017b). Soil aggregates as massively concurrent evolutionary incubators. The ISME Journal, 11, 1943–1948.

    Article  Google Scholar 

  • Rocha, S. T., & Duarte, A. C. (2015). A critical overview of the analytical approaches to the occurrence, the fate and behaviour of microplastics in the environment. TrAC Trends in Analytical Chemistry, 65, 47–53.

    Article  Google Scholar 

  • Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., da Costa, J., Duarte, A. C., Vala, H., & Pereira, R. (2017). Histopathological and review molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220, 495–503.

    Article  CAS  Google Scholar 

  • Rossi, G., Barnoud, J., & Monticelli, L. (2014). Polystyrene nanoparticles perturb lipid membranes. Journal of Physical Chemistry Letters, 5, 241–246.

    Article  CAS  Google Scholar 

  • Scarascia-Mugnozza, G., Sica, C., & Russo, G. (2011). Plastic materials in European agriculture: Actual use and perspectives. Journal of Agricultural Engineering, 42, 15–28.

    Article  Google Scholar 

  • Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., & Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 550, 690–705.

    Article  CAS  Google Scholar 

  • Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B. J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence, and removal. Water Research, 152, 21–37. [CrossRef] [PubMed].

    Article  CAS  Google Scholar 

  • Sun, X. D., Yuan, X. Z., Jia, Y., et al. (2020). Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 15, 755–760. https://doi.org/10.1038/s41565-020-0707-4

    Article  CAS  Google Scholar 

  • Tang, J., Wu, Y., Esquivel-Elizondo, S., Sørensen, S. J., & Rittmann, B. E. (2018). How microbial aggregates protect against nanoparticle toxicity. Trends in Biotechnology, 36, 1171–1182.

    Article  CAS  Google Scholar 

  • Tencati, A., Pogutz, S., Moda, B., Brambilla, M., & Cacia, C. (2016). Prevention policies addressing packaging and packaging waste: Some emerging trends. Waste Management, 56, 35–45. [CrossRef] [PubMed].

    Article  Google Scholar 

  • Teuten, E. L., Saquing, J. M., Knappe, D. R., Barlaz, M. A., Jonsson, S., Bjorn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., Ogata, Y., Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M., & Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2027–2045.

    Article  CAS  Google Scholar 

  • Tremblay, J. F. (2018). Agriculture trying new films on Chinese lands Conventional plastic coverings are a boon to China’s agriculture but are taking an environmental toll. Chemical & Engineering News, 96, 18–19.

    Google Scholar 

  • United Nations Department of Economic and Social Affairs, Population Division, UNDESAPD. (2019). World population prospects, highlights.

    Google Scholar 

  • United States Government. (2018). Agriculture Section 3103 [Online]. United State Code (2011) Title 7. Available: https://www.gpo.gov/fdsys/pkg/USCODE-2011-title7/html/USCODE-2011-title7-chap64.htm

  • Vallespir Lowery, N., & Ursell, T. (2019). Structured environments fundamentally alter dynamics and stability of ecological communities. Proceedings of the National Academy of Sciences USA, 116, 379–388.

    Article  Google Scholar 

  • Veerasingam, S., Mugilarasan, M., Venkatachalapathy, R., & Vethamony, P. (2016). Influence of 2015 flood on the distribution and occurrence of microplastic pellets along the Chennai coast, India. Marine Pollution Bulletin, 109, 196–204.

    Article  CAS  Google Scholar 

  • Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. S. (2016). Toxic pollutants from plastic waste: A review. Procedia Environmental Sciences, 35, 701–708. https://doi.org/10.1016/j.proenv.2016.07.069

    Article  CAS  Google Scholar 

  • Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences USA, 111, 5266–5270.

    Article  CAS  Google Scholar 

  • Wang, W., & Wang, J. (2018). Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment. Ecotoxicology and Environmental Safety, 147, 648–655. https://doi.org/10.1016/j.ecoenv.2017.09.029

    Article  CAS  Google Scholar 

  • Wang, F., Wang, F., & Zeng, E. Y. (2018). Sorption of toxic chemicals on microplastics. In E. Zeng (Ed.), Microplastic contamination in aquatic environments (1st ed., pp. 225–247). Elsevier. https://doi.org/10.1016/B978-0-12-813747-5.00007-22018

    Chapter  Google Scholar 

  • Wang, W., Ge, J., Yu, X., & Li, H. (2020). Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of the Total Environment, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841

    Article  CAS  Google Scholar 

  • Yi, M., Zhou, S., Zhang, L., & Ding, S. (2020). The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environment Research, 93(1), 24–32. https://doi.org/10.1002/wer.1327

    Article  CAS  Google Scholar 

  • Yu, J. R., Adingo, S., Liu, X. L., Li, X. D., Sun, J., & Zhang, X. N. (2022). Micro plastics in soil ecosystem – A review of sources, fate, and ecological impact. Plant, Soil and Environment, 68, 1–17.

    Article  CAS  Google Scholar 

  • Zhang, B., Yang, X., Chen, L., Chao, J., Teng, J., & Wang, Q. (2020a). Microplastics in soils: A review of possible sources, analytical methods and ecological impacts. Journal of Chemical Technology & Biotechnology, 95, 2052–2068. [CrossRef].

    Article  CAS  Google Scholar 

  • Zhang, L., Xie, Y., Liu, J., Zhong, S., Qian, Y., & Gao, P. (2020b). An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environmental Science & Technology, 54(7), 4248–4255.

    Article  CAS  Google Scholar 

  • Zhang, L., Liu, J., Xie, Y., Zhong, S., & Gao, P. (2021a). Occurrence and removal of microplastics from wastewater treatment plants in a typical tourist city in China. Journal of Cleaner Production, 291, 125968.

    Article  CAS  Google Scholar 

  • Zhang, L., Xie, Y., Zhong, S., Liu, J., Qin, Y., & Gao, P. (2021b). Microplastics in freshwater and wild fishes from Lijiang River in Guangxi, Southwest China. Science of the Total Environment, 755(Pt 1), 142428.

    Article  CAS  Google Scholar 

  • Zhao, T., Lozano, Y. M., & Rillig, M. C. (2021). Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Frontiers in Environmental Science, 9, 675803. https://doi.org/10.3389/fenvs.2021.675803

    Article  Google Scholar 

  • Zhu, D., Chen, Q. L., An, X. L., Yang, X. R., Christie, P., Ke, X., Wu, L. H., & Zhu, Y. G. (2018). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology and Biochemistry, 116, 302–310.

    Article  CAS  Google Scholar 

  • Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93–99. [CrossRef].

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aransiola, S.A., Victor-Ekwebelem, M.O., Ajiboye, A.E., Zobeashia, S.S.LT., Ijah, U.J.J., Oyedele, O.J. (2023). Ecological Impacts and Toxicity of Micro- and Nanoplastics in Agroecosystem. In: Maddela, N.R., Reddy, K.V., Ranjit, P. (eds) Micro and Nanoplastics in Soil. Springer, Cham. https://doi.org/10.1007/978-3-031-21195-9_10

Download citation

Publish with us

Policies and ethics