Skip to main content

Flood Risk Assessment of Himalayan Foothill Rivers: A Study of Jaldhaka River, India

  • Chapter
  • First Online:
Floods in the Ganga–Brahmaputra–Meghna Delta

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

Flood is an annual recurrent event in the Himalayan foothill province of West Bengal. The middle course of Jaldhaka River basin experiences flood occasionally. The main river with its tributaries carries huge discharge during monsoon periods, resulting floods that affect the entire landscape. The study is an assessment of flood susceptibility using analytical hierarchy process (AHP) where elevation (m), slope (degree), mean rainfall (cm), normalized difference vegetation index (NDVI), bare soil index (BSI), topographic wetness index (TWI), and distance from rivers (km) have been considered. Five classes have been assessed where very high and high flood susceptibility areas are concentrated in the lower flood plain section of Rothikhola, Sukti, and Jaldhaka itself. There is remarkable changes from 2000–2020 in land utilization also where settlement and agricultural land have increased enormously in moderate to low flood-risk sections of near-foothill area and settlement has shifted from the flood plains to the northern section. Natural vegetation has decreased, and there is a remarkable increase of agricultural land over both banks of river channels. The outcome of the study portrays a change in the land utilization pattern affected by recurrent flood events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adnan, M., Dewan, A., Zannat, K., & Abdullah, A. (2019). The use of watershed geomorphic data in flash flood susceptibility zoning: A case study of the Karnaphuli and Sangu river basins of Bangladesh. Natural Hazards, 99(1), 425–448. https://doi.org/10.1007/s11069-019-03749-3

    Article  Google Scholar 

  • Ahmad, M. (2018). Application of remote sensing and GIS for flood hazard management : A case study of Bihar (India). Contemporary. Social Sciences, 27(2), 69–77. https://doi.org/10.29070/27/57466

    Article  Google Scholar 

  • Ahmed, A., Hewa, G., & Alrajhi, A. (2021). Flood susceptibility mapping using a geomorphometric approach in South Australian basins. Natural Hazards, 106(1), 629–653. https://doi.org/10.1007/s11069-020-04481-z

    Article  Google Scholar 

  • Alam, A., Ahmed, B., & Sammonds, P. (2021). Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quaternary International, 575–576, 295–307. https://doi.org/10.1016/j.quaint.2020.04.047

    Article  Google Scholar 

  • Arabameri, A., Rezaei, K., Cerdà, A., Conoscenti, C., & Kalantari, Z. (2019). A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Science of the Total Environment, 660, 443–458. https://doi.org/10.1016/j.scitotenv.2019.01.021

    Article  Google Scholar 

  • Astaras, T., Oikonomidis, D., & Mouratidis, A. (2011). Psifiakí Chartografía kai Geografiká Systímata Pliroforión [Digital Cartography and GIS]. Ekdóseis Dísigma [Disigma Publishing Group].

    Google Scholar 

  • Baez-Villanueva, O., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J., & Thinh, N. (2018). Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213, 34–50. https://doi.org/10.1016/j.atmosres.2018.05.011

    Article  Google Scholar 

  • Baky, M., Islam, M., & Paul, S. (2019). Flood hazard, vulnerability and risk assessment for different land use classes using a flow model. Earth Systems and Environment, 4(1), 225–244. https://doi.org/10.1007/s41748-019-00141-w

    Article  Google Scholar 

  • Bhat, M., Alam, A., Ahmad, S., Farooq, H., & Ahmad, B. (2019). Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environmental Earth Sciences, 78(2). https://doi.org/10.1007/s12665-019-8046-1

  • Birkholz, S., Muro, M., Jeffrey, P., & Smith, H. (2014). Rethinking the relationship between flood risk perception and flood management. Science of the Total Environment, 478, 12–20. https://doi.org/10.1016/j.scitotenv.2014.01.061

    Article  Google Scholar 

  • Biswas, M., & Banerjee, P. (2018). Bridge construction and river channel morphology—A comprehensive study of flow behavior and sediment size alteration of the river Chel, India. Arabian Journal of Geosciences, 1–23. https://doi.org/10.1007/s12517-018-3789-7

  • Biswas, M., & Dhara, P. (2019). Evolutionary characteristics of meander cut-off—A hydro-morphological study of the Jalangi River, West Bengal, India. Arabian Journal of Geosciences, 12, 667. https://doi.org/10.1007/s12517-019-4711-7

    Article  Google Scholar 

  • Bui, D. T., Ngo, P. T. T., Pham, T. D., Jaafari, A., Minh, N. Q., Hoa, P. V., & Samui, P. (2019, August). A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. CATENA, 179, 184–196. https://doi.org/10.1016/j.catena.2019.04.009

  • Chakraborty, A., & Joshi, P. (2014). Mapping disaster vulnerability in India using analytical hierarchy process. Geomatics, Natural Hazards and Risk, 7(1), 308–325. https://doi.org/10.1080/19475705.2014.897656

    Article  Google Scholar 

  • Chakraborty, S., & Mukhopadhyay, S. (2019). Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): Application in Coochbehar district of West Bengal, India. Natural Hazards, 99(1), 247–274. https://doi.org/10.1007/s11069-019-03737-7

    Article  Google Scholar 

  • Chang, H., & Franczyk, J. (2008). Climate change, land-use change, and floods: Toward an integrated assessment. Geography Compass, 2(5), 1549–1579. https://doi.org/10.1111/j.1749-8198.2008.00136.x

    Article  Google Scholar 

  • Costache, R., Pham, Q., Sharifi, E., Linh, N., Abba, S., Vojtek, M., et al. (2019). Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sensing, 12(1), 106. https://doi.org/10.3390/rs12010106

    Article  Google Scholar 

  • CRED, U. (2015). The human cost of natural disasters 2015: A global perspective. Centre for Research on Epidemiology of Disasters, Universitécatholique de …, 2015.

    Google Scholar 

  • Dandapat, K., & Panda, G. (2017). Flood vulnerability analysis and risk assessment using analytical hierarchy process. Modeling Earth Systems and Environment, 3(4), 1627–1646. https://doi.org/10.1007/s40808-017-0388-7

    Article  Google Scholar 

  • Darabi, H., Choubin, B., Rahmati, O., TorabiHaghighi, A., Pradhan, B., & Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology, 569, 142–154. https://doi.org/10.1016/j.jhydrol.2018.12.002

    Article  Google Scholar 

  • Das, S., & Sahu, A. (2017). Flood zonation mapping through RS and GIS techniques: A case study in Panskura of Purba Medinipur District, West Bengal. In S. Chatterjee (Ed.), Indian journal of landscape systems and ecological studies (pp. 126–135).

    Google Scholar 

  • Das, M., Chattopadhyay, A., & Basu, R. (2017). Spatial Flood Potential Mapping (SFPM) with flood probability and exposure indicators of flood vulnerability: Case study former Jalpaiguri District, West Bengal, India. Journal of Geography & Natural Disasters, 7(3). https://doi.org/10.4172/2167-0587.1000210

  • Das, S. (2019). Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sensing Applications: Society and Environment, 14, 60–74. https://doi.org/10.1016/j.rsase.2019.02.006

  • Dawod, G., Mirza, M., & Al-Ghamdi, K. (2012). GIS-based estimation of flood hazard impacts on road network in Makkah city, Saudi Arabia. Environmental Earth Sciences, 67(8), 2205–2215. https://doi.org/10.1007/s12665-012-1660-9

    Article  Google Scholar 

  • Degiorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., & Taramasso, A. (2012). Classifiers for the detection of flood-prone areas using remote sensed elevation data. Journal of Hydrology, 470–471, 302–315. https://doi.org/10.1016/j.jhydrol.2012.09.006

    Article  Google Scholar 

  • Dewan, A. (2013). Floods in a megacity: Geospatial techniques in assessing hazards, risk and vulnerability. Springer.

    Book  Google Scholar 

  • Dhar, O. N., & Nandargi, S. (2003). Hydrometeorological aspects of floods in India. Natural Hazards, 28(1), 1–33. https://doi.org/10.1023/a:1021199714487

  • Domakinis, C., Mouratidis, A., Voudouris, K., Astaras, T., & Karypidou, M. (2020). Flood susceptibility mapping in Erythropotamos river basin with the aid of remote sensing and GIS. AUC Geographica, 55(2), 149–164. https://doi.org/10.14712/23361980.2020.11

    Article  Google Scholar 

  • El Bastawesy, M., Attwa, M., Abdel Hafeez, T., & Gad, A. (2019). Flash floods and groundwater evaluation for the non-gauged dryland catchment using remote sensing, GIS and DC resistivity data: A case study from the Eastern Desert of Egypt. Journal of African Earth Sciences, 152, 245–255. https://doi.org/10.1016/j.jafrearsci.2019.02.004

    Article  Google Scholar 

  • Ghosh, T. (2018). Floods and people, colonial North Bengal, 1871–1922. Studies in People’s History, 5(1), 32–47. https://doi.org/10.1177/2348448918759855

    Article  Google Scholar 

  • Ghosh, A., & Kar, S. (2018). Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India. Natural Hazards, 94(1), 349–368. https://doi.org/10.1007/s11069-018-3392-y

    Article  Google Scholar 

  • Hu, P., Zhang, Q., Shi, P., Chen, B., & Fang, J. (2018). Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors. Science of the Total Environment, 643, 171–182. https://doi.org/10.1016/j.scitotenv.2018.06.197

    Article  Google Scholar 

  • Jarrett, R., & Tomlinson, E. (2000). Regional interdisciplinary paleoflood approach to assess extreme flood potential. Water Resources Research, 36(10), 2957–2984. https://doi.org/10.1029/2000wr900098

    Article  Google Scholar 

  • Kabenge, M., Elaru, J., Wang, H., & Li, F. (2017). Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index. Natural Hazards, 89(3), 1369–1387. https://doi.org/10.1007/s11069-017-3024-y

    Article  Google Scholar 

  • Kale, V. S. (2004). Floods in India: Their frequency and pattern. Coping with natural hazards: Indian context (pp. 91–103). Orient Longman.

    Google Scholar 

  • Kaur, H., Gupta, S., Parkash, S., Thapa, R., & Mandal, R. (2017). Geospatial modelling of flood susceptibility pattern in a subtropical area of West Bengal, India. Environmental Earth Sciences, 76(9). https://doi.org/10.1007/s12665-017-6667-9

  • Kazakis, N., Kougias, I., & Patsialis, T. (2015). Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope–Evros region, Greece. Science of the Total Environment, 538, 555–563. https://doi.org/10.1016/j.scitotenv.2015.08.055

    Article  Google Scholar 

  • Khosravi, K., Pourghasemi, H., Chapi, K., & Bahri, M. (2016). Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring and Assessment, 188(12). https://doi.org/10.1007/s10661-016-5665-9

  • Kowalzig. (2008). Climate, poverty, and justice: What the Poznań UN climate conference needs to deliver for a fair and effective global deal. Oxfam Policy and Practice: Climate Change and Resilience, 117–148.

    Google Scholar 

  • Li, C., Chai, Y., Yang, L., & Li, H. (2016). Spatio-temporal distribution of flood disasters and analysis of influencing factors in Africa. Natural Hazards, 82(1), 721–731. https://doi.org/10.1007/s11069-016-2181-8

    Article  Google Scholar 

  • Mahmood, S., & Rahman, A. (2019). Flash flood susceptibility modeling using geo-morphometric and hydrological approaches in Panjkora Basin, Eastern Hindu Kush, Pakistan. Environmental Earth Sciences, 78(1). https://doi.org/10.1007/s12665-018-8041-y

  • Malik, S., Chandra Pal, S., Chowdhuri, I., Chakrabortty, R., Roy, P., & Das, B. (2020). Prediction of highly flood prone areas by GIS based heuristic and statistical model in a monsoon dominated region of Bengal Basin. Remote Sensing Applications: Society and Environment, 19, 100343. https://doi.org/10.1016/j.rsase.2020.100343

    Article  Google Scholar 

  • Mandal, S., & Sarkar, S. (2016). Overprint of neotectonism along the course of River Chel, North Bengal, India. Journal of Palaeogeography, 5(3), 221–240. https://doi.org/10.1016/j.jop.2016.05.004

    Article  Google Scholar 

  • Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., & Ghazali, A. H. B. (2017). Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 1080–1102. https://doi.org/10.1080/19475705.2017.1294113

  • Mohamed, S., & El-Raey, M. (2019). Vulnerability assessment for flash floods using GIS spatial machine-learning-based sensed data in El-Arish City, North Sinai, Egypt. Natural Hazards, 102(2), 707–728. https://doi.org/10.1007/s11069-019-03571-x

  • Mouratidis, A., & Sarti, F. (2012). Flash-flood monitoring and damage assessment with SAR data: Issues and future challenges for earth observation from space sustained by case studies from the Balkans and Eastern Europe. Lecture Notes in Geoinformation and Cartography, 125–136. https://doi.org/10.1007/978-3-642-32714-8_8

  • Mirzaei, S., Vafakhah, M., Pradhan, B., & Alavi, S. J. (2020, October 15). Flood susceptibility assessment using extreme gradient boosting (EGB), Iran. Earth Science Informatics, 14(1), 51–67. https://doi.org/10.1007/s12145-020-00530-0

  • NBFCC. (1965). Master plan of flood control and drainage improvement 111 the catchment of river Teesta, December, 1965. Govt. of West Bengal.

    Google Scholar 

  • Patrikaki, O., Kazakis, N., Kougias, I., Patsialis, T., Theodossiou, N., & Voudouris, K. (2018). Assessing flood Hazard at river basin scale with an index-based approach: The case of Mouriki, Greece. Geosciences, 8(2), 50. https://doi.org/10.3390/geosciences8020050

    Article  Google Scholar 

  • Paul, A., & Biswas, M. (2019). Changes in river bed terrain and its impact on flood propagation – A case study of River Jayanti, West Bengal, India. Geomatics, Natural Hazards and Risk, 10(1). https://doi.org/10.1080/19475705.2019.1650124

  • Paul, G., Saha, S., & Hembram, T. (2019). Application of the GIS-based probabilistic models for mapping the flood susceptibility in Bansloi sub-basin of Ganga-Bhagirathi River and their comparison. Remote Sensing in Earth Systems Sciences, 2(2–3), 120–146. https://doi.org/10.1007/s41976-019-00018-6

    Article  Google Scholar 

  • Quesada Román, A. (2021). Landslides and floods zonation using geomorphological analyses in a dynamic basin of Costa Rica. Revista Cartográfica, 102, 125–138. https://doi.org/10.35424/rcarto.i102.901

    Article  Google Scholar 

  • Raha, A., & Biswas, M. (2022a). Himalayan foredeep neotectonics and deformed riverscape landforms: An integrated discussion, West Bengal, India. In H. N. Bhattacharya, S. Bhattacharya, B. C. Das, & A. Islam (Eds.), Himalayan neotectonics and channel evolution (Society of Earth Scientists Series). Springer. https://doi.org/10.1007/978-3-030-95435-2_11

    Chapter  Google Scholar 

  • Raha, A., & Biswas, M. (2022b). Quaternary alluvial fan dynamics of the Jaldhaka basin. Journal of Mountain Science, 19(8). https://doi.org/10.1007/s11629-021-7005-y

  • Rahman, M., Ningsheng, C., Islam, M., Dewan, A., Iqbal, J., Washakh, R., & Shufeng, T. (2019). Flood susceptibility assessment in Bangladesh using machine learning and multi-criteria decision analysis. Earth Systems and Environment, 3(3), 585–601. https://doi.org/10.1007/s41748-019-00123-y

    Article  Google Scholar 

  • Rai, P., & Mohan, K. (2014). Remote sensing data & GIS for flood risk zonation mapping in Varanasi District, India. Forum Geografic, XIII(1), 25–33. https://doi.org/10.5775/fg.2067-4635.2014.041.i

    Article  Google Scholar 

  • Rastogi, A., Thakur, P., Rao, G., Aggarwal, S., Dadhwal, V., & Chauhan, P. (2018). Integrated flood study of bagmati river basin with hydro processing, flood inundation mapping & 1-D hydrodynamic modeling using remote sensing and GIS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-5, 165–172. https://doi.org/10.5194/isprs-annals-iv-5-165-2018

  • Rimba, A., Setiawati, M., Sambah, A., & Miura, F. (2017). Physical flood vulnerability mapping applying geospatial techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science, 1(1), 7. https://doi.org/10.3390/urbansci1010007

    Article  Google Scholar 

  • Roy, S. (2011). Flood hazards in Jalpaiguri District and its management (Ph.D.). University of North Bengal.

    Google Scholar 

  • Roy, S., Bose, A., & Chowdhury, I. (2021). Flood risk assessment using geospatial data and multi-criteria decision approach: A study from historically active flood-prone region of Himalayan foothill, India. Arabian Journal of Geosciences, 14(11). https://doi.org/10.1007/s12517-021-07324-8

  • Rozalis, S., Morin, E., Yair, Y., & Price, C. (2010). Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. Journal of Hydrology, 394(1–2), 245–255. https://doi.org/10.1016/j.jhydrol.2010.03.021

  • Saaty, T. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill International Book Co. ISBN: 0070543712 9780070543713.

    Google Scholar 

  • Saaty, T. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I

    Article  Google Scholar 

  • Sahu, A. (2014). A study on Moyna basin water-logged areas (India) using remote sensing and GIS methods and their contemporary economic significance. Geography Journal, 2014, 1–9. https://doi.org/10.1155/2014/401324

    Article  Google Scholar 

  • Samanta, S., Koloa, C., Kumar Pal, D., & Palsamanta, B. (2016, August 2). Flood risk analysis in lower part of Markham river based on multi-criteria decision approach (MCDA). Hydrology, 3(3), 29. https://doi.org/10.3390/hydrology3030029

  • Sankhua, R., Sharma, N., & Garg, P. (2015). Flood management through ANN-based spatio-temporal morphological model – A potential approach for the Brahmaputra.

    Google Scholar 

  • Sarkar, D., & Mondal, P. (2019). Flood vulnerability mapping using frequency ratio (FR) model: A case study on Kulik river basin, indo-Bangladesh Barind region. Applied Water Science, 10(1). https://doi.org/10.1007/s13201-019-1102-x

  • Şener, Ş., Sener, E., & Karagüzel, R. (2010). Solid waste disposal site selection with GIS and AHP methodology: A case study in Senirkent–Uluborlu (Isparta) Basin, Turkey. Environmental Monitoring and Assessment, 173(1–4), 533–554. https://doi.org/10.1007/s10661-010-1403-x

    Article  Google Scholar 

  • Shehata, M., & Mizunaga, H. (2018). Flash flood risk assessment for Kyushu Island. Japan Environmental Earth Science.

    Google Scholar 

  • Shrestha, U., Gautam, S., & Bawa, K. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One, 7(5), e36741. https://doi.org/10.1371/journal.pone.0036741

    Article  Google Scholar 

  • Swain, K., Singha, C., & Nayak, L. (2020). Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9(12), 720. https://doi.org/10.3390/ijgi9120720

    Article  Google Scholar 

  • Tehrany, M., Lee, M., Pradhan, B., Jebur, M., & Lee, S. (2014). Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental Earth Sciences, 72(10), 4001–4015. https://doi.org/10.1007/s12665-014-3289-3

    Article  Google Scholar 

  • Tien Bui, D., Khosravi, K., Shahabi, H., Daggupati, P., Adamowski, J., Melesse, M. A., et al. (2019). Flood spatial Modeling in Northern Iran using remote sensing and GIS: A comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sensing, 11(13), 1589. https://doi.org/10.3390/rs11131589

    Article  Google Scholar 

  • Woods, R., & Sivapalan, M. (1997). A connection between topographically driven runoff generation and channel network structure. Water Resources Research, 33(12), 2939–2950. https://doi.org/10.1029/97wr01880

    Article  Google Scholar 

  • Yésou, H., Sarti, F., Tholey, N., Mouratidis, A., Clandillon, S., Huber, C., Stude R. M., & De Fraipont, P. (2013). Addressing emergency flood mapping and monitoring of inland water bodies with sentinel 1–2. Expectations and perspectives. Living Planet Symposium, 9–13 September 2013, Edinburgh, UK, ESA SP-722.

    Google Scholar 

  • Youssef, A. M., Pradhan, B., & Hassan, A. M. (2010). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences, 62(3), 611–623. https://doi.org/10.1007/s12665-010-0551-1

  • Youssef, A., Pradhan, B., & Sefry, S. (2015). Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environmental Earth Sciences, 75(1). https://doi.org/10.1007/s12665-015-4830-8

  • Zhong, S., Yang, L., Toloo, S., Wang, Z., Tong, S., Sun, X., et al. (2018). The long-term physical and psychological health impacts of flooding: A systematic mapping. Science of the Total Environment, 626, 165–194. https://doi.org/10.1016/j.scitotenv.2018.01.041

    Article  Google Scholar 

  • Zhou, Z., Wang, X., Sun, R., Ao, X., Sun, X., & Song, M. (2014). Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part II: Model application and results. Natural Hazards, 72(2), 675–700. https://doi.org/10.1007/s11069-013-1029-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mery Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raha, A., Gupta, S., Biswas, M. (2023). Flood Risk Assessment of Himalayan Foothill Rivers: A Study of Jaldhaka River, India. In: Islam, A., et al. Floods in the Ganga–Brahmaputra–Meghna Delta. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-031-21086-0_4

Download citation

Publish with us

Policies and ethics