Skip to main content

Industrial Wastewater to Biohydrogen Production via Potential Bio-refinery Route

  • Chapter
  • First Online:
Biorefinery for Water and Wastewater Treatment

Abstract

Extensive and inappropriate use of water from industrial and other activities produce substantial quantity of wastewater worldwide. Wastewaters from different industries consist of significant quantity of nutrients viz. phosphorous, nitrogen and carbon. As such, the recovery of such nutrients through adequate sustainable technique has become a necessity. Amongst various available techniques, bio refinery routes utilizing dark fermentation and microalgae-based technologies have gained considerable recognition over the last few decades, along with its strategies for sustainable and cost effective treatment which allows degradation of more than 75% nutrient loads from wastewater. Comprehensive studies on the mechanism of bio refinery approach, its associated technologies and various microbial catalyst involved in bioenergy production from wastewater are extensively discussed and summarized in this chapter. The significant presence of value-added biomolecules in dark fermentation and harvested microalgae biomass along with its subsequent application in biohydrogen production has also been demonstrated. More apparently, the two stage coupling process and its possibilities towards potential bio refinery systems have been reviewed comprehensively. Comparative energy and economic aspects of biohydrogen production from industrial wastewater based on techno-economic analysis and life cycle assessment are also taken into consideration. Taken together, this chapter effectively summarizes the modern developments and enhancement strategies for improving the potential of low-cost bio refinery system for wastewater treatments and resource recovery, which can present new insights on assisting the bio refinery approach towards promising environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abomohra AEF, Eladel H, El-Esawi M, Wang S, Wang Q, He Z, Feng Y, Shang H, Hanelt D (2018) Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: innovative waste recycling for extraordinary lipid production. Bioresour Technol 249:992–999

    Article  CAS  Google Scholar 

  • Akutsu Y, Lee DY, Li YY, Noike T (2009) Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int J Hydrog Energy 34:5365–5372

    Article  CAS  Google Scholar 

  • Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geißen SU (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenerg 75:101–118

    Article  CAS  Google Scholar 

  • Banu JR, Yukesh Kannah R, Dinesh Kumar M, Gunasekaran M, Sivagurunathan P, Park JH, Kumar G (2018) Recent advances on biogranules formation in dark hydrogen fermentation system: mechanism of formation and microbial characteristics. Bioresour Technol 268:787–796

    Article  CAS  Google Scholar 

  • Cappelletti BM, Reginatto V, Amante ER, Antônio RV (2011) Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renew Energy 36:3367–3372

    Article  CAS  Google Scholar 

  • Chaganti SR, Lalman JA, Heath DD (2012) 16S rRNA gene based analysis of the microbial diversity and hydrogen production in three mixed anaerobic cultures. Int J Hydrog Energy 37:9002–9017

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Lee YJ, Lee DW (2015) Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 16:8266–8293

    Article  CAS  Google Scholar 

  • Chen CY, Lee MH, Dong C Di, Leong YK, Chang JS (2020) Enhanced production of microalgal lipids using a heterotrophic marine microalga Thraustochytrium sp. BM2. Biochem Eng J 154:107429

    Google Scholar 

  • Daneshvar E, Zarrinmehr MJ, Koutra E, Kornaros M, Farhadian O, Bhatnagar A (2019) Sequential cultivation of microalgae in raw and recycled dairy wastewater: microalgal growth, wastewater treatment and biochemical composition. Bioresour Technol 273:556–564

    Article  CAS  Google Scholar 

  • Dhar BR, Elbeshbishy E, Nakhla G (2012) Influence of iron on sulfide inhibition in dark biohydrogen fermentation. Bioresour Technol 126:123–130

    Article  CAS  Google Scholar 

  • Di Sanzo G, Mehariya S, Martino M, Larocca V, Casella P, Chianese S, Musmarra D, Balducchi R, Molino A (2018) Supercritical carbon dioxide extraction of astaxanthin, lutein, and fatty acids from haematococcus pluvialis microalgae. Mar Drugs. https://doi.org/10.3390/md16090334

    Article  Google Scholar 

  • Ehimen EA, Connaughton S, Sun Z, Carrington GC (2009) Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy 1:371–381

    Article  CAS  Google Scholar 

  • Fakhimi N, Tavakoli O (2019) Improving hydrogen production using co-cultivation of bacteria with Chlamydomonas reinhardtii microalga. Mater Sci Energy Technol 2:1–7

    Google Scholar 

  • Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Article  CAS  Google Scholar 

  • Ghosh A, Kiran B (2017a) Carbon concentration in algae: reducing CO(2) from exhaust gas. Trends Biotechnol 35:806–808

    Article  CAS  Google Scholar 

  • Ghosh A, Kiran B (2017b) Carbon concentration in algae: reducing CO2 from exhaust gas. Trends Biotechnol 35:806–808

    Article  CAS  Google Scholar 

  • Goswami RK, Mehariya S, Verma P, Lavecchia R, Zuorro A (2021) Microalgae-based biorefineries for sustainable resource recovery from wastewater. J Water Process Eng 40:101747

    Article  Google Scholar 

  • Goud RK, Sarkar O, Chiranjeevi P, Venkata Mohan S (2014) Bioaugmentation of potent acidogenic isolates: a strategy for enhancing biohydrogen production at elevated organic load. Bioresour Technol 165:223–232

    Article  CAS  Google Scholar 

  • Guo XM, Trably E, Latrille E, Carrre H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673

    Article  CAS  Google Scholar 

  • Hwang MH, Jang NJ, Hyun SH, Kim IS (2004) Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J Biotechnol 111:297–309

    Article  CAS  Google Scholar 

  • Hwang JH, Choi JA, Oh YK, Abou-Shanab RAI, Song H, Min B, Cho Y, Na JG, Koo J, Jeon BH (2011) Hydrogen production from sulfate- and ferrous-enriched wastewater. Int J Hydrog Energy 36:13984–13990

    Article  CAS  Google Scholar 

  • Karadag D, KöroÄŸlu OE, Ozkaya B, Cakmakci M, Heaven S, Banks C (2014) A review on fermentative hydrogen production from dairy industry wastewater. J Chem Technol Biotechnol 89:1627–1636

    Article  CAS  Google Scholar 

  • Kim MS, Lee DY, Kim DH (2011) Continuous hydrogen production from tofu processing waste using anaerobic mixed microflora under thermophilic conditions. Int J Hydrog Energy 36:8712–8718

    Article  CAS  Google Scholar 

  • Li YC, Liu YF, Chu CY, Chang PL, Hsu CW, Lin PJ, Wu SY (2012) Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste. Int J Hydrog Energy 37:15704–15710

    Article  CAS  Google Scholar 

  • Lowrey J, Brooks MS, McGinn PJ (2015) Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. J Appl Phycol 27:1485–1498

    Article  CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2013) Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25:855–865

    Article  CAS  Google Scholar 

  • Maheshwari N, Krishna PK, Thakur IS, Srivastava S (2020) Biological fixation of carbon dioxide and biodiesel production using microalgae isolated from sewage waste water. Environ Sci Pollut Res Int 27:27319–27329

    Article  CAS  Google Scholar 

  • Makut BB, Das D, Goswami G (2019) Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: a sustainable approach. Algal Res 37:228–239

    Article  Google Scholar 

  • Mehar J, Shekh A, Uthaiah Malchira N, Mudliar S (2019) Potential of microalgae for integrated biomass production utilizing CO2 and food industry wastewater. In: Gupta SK, Bux F (eds) Appl. microalgae wastewater treat. Vol. 2 Biorefinery approaches wastewater treat. Springer International Publishing, Cham, pp 41–67

    Google Scholar 

  • Mishra P, Das D (2014) Biohydrogen production from Enterobacter cloacae IIT-BT 08 using distillery effluent. Int J Hydrog Energy 39:7496–7507

    Article  CAS  Google Scholar 

  • Nayak M, Karemore A, Sen R (2016) Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Res 16:216–223

    Article  Google Scholar 

  • Nguyen TDP, Le TVA, Show PL, Nguyen TT, Tran MH, Tran TNT, Lee SY (2019) Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresour Technol 272:34–39

    Article  CAS  Google Scholar 

  • Niu K, Zhang X, Tan WS, Zhu ML (2010) Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. Int J Hydrog Energy 35:71–80

    Article  CAS  Google Scholar 

  • Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valoriz 1:21–39

    Article  CAS  Google Scholar 

  • Ogbonna CN, Edeh I (2018) Harvesting Chlorella variabilis biomass using Moringa oleifera seed-induced sedimentation. J Adv Biol Biotechnol 18:1–11

    Article  Google Scholar 

  • O-Thong S, Hniman A, Prasertsan P, Imai T (2011) Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. Int J Hydrog Energy 36:3409–3416

    Article  Google Scholar 

  • Pattra S, Lay CH, Lin CY, O-Thong S, Reungsang A (2011) Performance and population analysis of hydrogen production from sugarcane juice by non-sterile continuous stirred tank reactor augmented with Clostridium butyricum. Int J Hydrog Energy 36:8697–8703

    Article  CAS  Google Scholar 

  • Prasertsan P, O-Thong S, Birkeland NK (2009) Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process. Int J Hydrog Energy 34:7448–7459

    Google Scholar 

  • Prathima Devi M, Venkata Mohan S (2012) CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour Technol 112:116–123

    Article  CAS  Google Scholar 

  • Rajesh Banu J, Kavitha S, Yukesh Kannah R, Bhosale RR, Kumar G (2020) Industrial wastewater to biohydrogen: possibilities towards successful biorefinery route. Bioresour Technol 298:122378

    Article  CAS  Google Scholar 

  • Ramprakash B, Muthukumar K (2014) Comparative study on the production of biohydrogen from rice mill wastewater. Int J Hydrog Energy 39:14613–14621

    Article  CAS  Google Scholar 

  • Ramprakash B, Muthukumar K (2015) Comparative study on the performance of various pretreatment and hydrolysis methods for the production of biohydrogen using Enterobacter aerogenes RM 08 from rice mill wastewater. Int J Hydrog Energy 40:9106–9112

    Article  CAS  Google Scholar 

  • Ramprakash B, Muthukumar K (2018) Influence of sulfuric acid concentration on biohydrogen production from rice mill wastewater using pure and coculture of Enterobacter aerogenes and Citrobacter freundii. Int J Hydrog Energy 43:9254–9258

    Article  CAS  Google Scholar 

  • Rashid N, Ryu AJ, Jeong KJ, Lee B, Chang YK (2019) Co-cultivation of two freshwater microalgae species to improve biomass productivity and biodiesel production. Energy Convers Manag 196:640–648

    Article  CAS  Google Scholar 

  • Schnurr PJ, Allen DG (2015) Factors affecting algae biofilm growth and lipid production: a review. Renew Sustain Energy Rev 52:418–429

    Article  CAS  Google Scholar 

  • Sen B, Suttar RR (2012) Mesophilic fermentative hydrogen production from sago starch-processing wastewater using enriched mixed cultures. Int J Hydrog Energy 37:15588–15597

    Article  CAS  Google Scholar 

  • Sivagurunathan P, Lin CY (2016) Enhanced biohydrogen production from beverage wastewater: process performance during various hydraulic retention times and their microbial insights. RSC Adv 6:4160–4169

    Article  CAS  Google Scholar 

  • Sivagurunathan P, Gopalakrishnan K, Lin C-Y (2014) Enhancement of fermentative hydrogen production from beverage wastewater via bioaugmentation and statistical optimization. Curr Biochem Eng 1:92–98

    Article  CAS  Google Scholar 

  • Sivagurunathan P, Sen B, Lin CY (2015) High-rate fermentative hydrogen production from beverage wastewater. Appl Energy 147:1–9

    Article  CAS  Google Scholar 

  • Sivagurunathan P, Kumar G, Mudhoo A, Rene ER, Saratale GD, Kobayashi T, Xu K, Kim SH, Kim DH (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew Sustain Energy Rev 77:28–42

    Article  CAS  Google Scholar 

  • Sridevi K, Sivaraman E, Mullai P (2014) Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor. Bioresour Technol 165:233–240

    Article  CAS  Google Scholar 

  • SundarRajan PS, Gopinath KP, Greetham D, Antonysamy AJ (2019) A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system. J Clean Prod 210:445–458

    Article  CAS  Google Scholar 

  • Tu R, Jin W, Han S, Zhou X, Wang J, Wang Q, He Z, Ding W, Che L, Feng X (2019) Enhancement of microalgal lipid production in municipal wastewater: fixation of CO2 from the power plant tail gas. Biomass Bioenerg 131:105400

    Article  CAS  Google Scholar 

  • Tüzün I, Bayramoǧlu G, Yalçin E, BaÅŸaran G, Çelik G, Arica MY (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77:85–92

    Article  Google Scholar 

  • Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sustain Energy Rev 13:1000–1013

    Article  CAS  Google Scholar 

  • Vatsala TM, Raj SM, Manimaran A (2008) A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. Int J Hydrog Energy 33:5404–5415

    Article  CAS  Google Scholar 

  • Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34:799–811

    Article  CAS  Google Scholar 

  • Wang YM, Wang JH, Wang C, Chen B, Liu JX, Cao H, Guo FC, Vázquez-Añón M (2010) Effect of different rumen-inert fatty acids supplemented with a dietary antioxidant on performance and antioxidative status of early-lactation cows. J Dairy Sci 93:3738–3745

    Article  CAS  Google Scholar 

  • Wang J-H, Zhang T-Y, Dao G-H, Xu X-Q, Wang X-X, Hu H-Y (2017) Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Appl Microbiol Biotechnol 101:2659–2675

    Article  CAS  Google Scholar 

  • Wen S, Liu H, He H, Luo L, Li X, Zeng G, Zhou Z, Lou W, Yang C (2016) Treatment of anaerobically digested swine wastewater by Rhodobacter blasticus and Rhodobacter capsulatus. Bioresour Technol 222:33–38

    Article  CAS  Google Scholar 

  • Wynn J, Behrens P, Sundararajan A, Hansen J, Apt K (2010) 6—Production of single cell oils by dinoflagellates. In: Cohen Z, Ratledge CBT-SCO, Second E (eds). AOCS Press, pp 115–129

    Google Scholar 

  • Yang P, Zhang R, McGarvey JA, Benemann JR (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrog Energy 32:4761–4771

    Article  CAS  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831

    Article  CAS  Google Scholar 

  • Zhang L, Zhang C, Liu J, Yang N (2020) A strategy for stimulating astaxanthin and lipid production in Haematococcus pluvialis by exogenous glycerol application under low light. Algal Res 46:101779

    Article  Google Scholar 

  • Zhou W, Wang J, Chen P, Ji C, Kang Q, Lu B, Li K, Liu J, Ruan R (2017) Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives. Renew Sustain Energy Rev 76:1163–1175

    Article  CAS  Google Scholar 

  • Zuorro A, Lavecchia R, Maffei G, Marra F, Miglietta S, Petrangeli A, Familiari G, Valente T (2015) Enhanced lipid extraction from unbroken microalgal cells using enzymes. Chem Eng Trans 43:211–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir K. Purkait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, P.P., Deepti, Purkait, M.K. (2023). Industrial Wastewater to Biohydrogen Production via Potential Bio-refinery Route. In: Shah, M.P. (eds) Biorefinery for Water and Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-031-20822-5_8

Download citation

Publish with us

Policies and ethics