Skip to main content

Stem Cell Models in Prion Research

  • Chapter
  • First Online:
Prions and Diseases
  • 841 Accesses

Abstract

Stem cells have the capacity to differentiate into the mature cells of any organ within the body. For this reason, they offer an interesting opportunity to model many cellular systems and their associated diseases. Prion diseases (PrDs) are a family of fatal neurodegenerative diseases caused by mis-folding of the prion protein (PrP), a protein lacking consensus on its native function. Stem cell models have been used for investigating PrP function and PrDs for over two decades. Within this time, the models and the understanding of their use have been substantially expanded. Herein, the utilizations of stem cell models and the contribution to knowledge that has emerged from their use are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altmeppen HC, Prox J, Puig B, Kluth MA, Bernreuther C, Thurm D, Jorissen E, Petrowitz B, Bartsch U, De Strooper B, Saftig P, Glatzel M. Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener. 2011;6:36.

    Article  CAS  Google Scholar 

  • Altmeppen HC, Puig B, Dohler F, Thurm DK, Falker C, Krasemann S, Glatzel M. Proteolytic processing of the prion protein in health and disease. Am J Neurodegener Dis. 2012;1:15–31.

    Google Scholar 

  • Arnould H, Baudouin V, Baudry A, Ribeiro LW, Ardila-Osorio H, Pietri M, Caradeuc C, Soultawi C, Williams D, Alvarez M, Crozet C, Djouadi F, Laforge M, Bertho G, Kellermann O, Launay JM, Schmitt-Ulms G, Schneider B. Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases. PLoS Pathog. 2021;17:e1009991.

    Article  CAS  Google Scholar 

  • Asher DM, Gregori L. Human transmissible spongiform encephalopathies: historic view. Handb Clin Neurol. 2018;153:1–17.

    Article  Google Scholar 

  • Atarashi R, Sano K, Satoh K, Nishida N. Real-time quaking-induced conversion: a highly sensitive assay for prion detection. Prion. 2011;5:150–3.

    Article  CAS  Google Scholar 

  • Baudry M, Su W, Seinfeld J, Sun J, Bi X. Role of Calpain-1 in Neurogenesis. Front Mol Biosci. 2021;8:685938.

    Article  CAS  Google Scholar 

  • Belenguer G, Domingo-Muelas A, Ferrón SR, Morante-Redolat JM, Fariñas I. Isolation, culture and analysis of adult subependymal neural stem cells. Differentiation. 2016;91:28–41.

    Article  CAS  Google Scholar 

  • Belichenko PV, Miklossy J, Belser B, Budka H, Celio MR. Early destruction of the extracellular matrix around parvalbumin-immunoreactive interneurons in Creutzfeldt-Jakob disease. Neurobiol Dis. 1999;6:269–79.

    Article  CAS  Google Scholar 

  • Beraldo FH, Arantes CP, Santos TG, Machado CF, Roffe M, Hajj GN, Lee KS, Magalhães AC, Caetano FA, Mancini GL, Lopes MH, Américo TA, Magdesian MH, Ferguson SS, Linden R, Prado MA, Martins VR. Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminin γ1 chain. FASEB J. 2011;25:265–79.

    Article  CAS  Google Scholar 

  • Bozkulak EC, Weinmaster G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol. 2009;29:5679–95.

    Article  CAS  Google Scholar 

  • Bressan C, Saghatelyan A. Intrinsic mechanisms regulating neuronal migration in the postnatal brain. Front Cell Neurosci. 2020;14:620379.

    Article  CAS  Google Scholar 

  • Brody AH, Strittmatter SM. Synaptotoxic signaling by amyloid Beta oligomers in Alzheimer’s disease through prion protein and mGluR5. Adv Pharmacol. 2018;82:293–323.

    Article  CAS  Google Scholar 

  • Carroll JA, Groveman BR, Williams K, Moore R, Race B, Haigh CL. Prion protein N1 cleavage peptides stimulate microglial interaction with surrounding cells. Sci Rep. 2020;10:6654.

    Article  CAS  Google Scholar 

  • Carroll JA, Foliaki ST, Haigh CL. A 3D cell culture approach for studying neuroinflammation. J Neurosci Methods. 2021;358:109201.

    Article  CAS  Google Scholar 

  • Collins SJ, Haigh CL. Simplified murine 3D neuronal cultures for investigating neuronal activity and neurodegeneration. Cell Biochem Biophys. 2017;75:3–13.

    Article  CAS  Google Scholar 

  • Collins SJ, Tumpach C, Li QX, Lewis V, Ryan TM, Roberts B, Drew SC, Lawson VA, Haigh CL. The prion protein regulates beta-amyloid-mediated self-renewal of neural stem cells in vitro. Stem Cell Res Ther. 2015;6:60.

    Article  Google Scholar 

  • Collins SJ, Tumpach C, Groveman BR, Drew SC, Haigh CL. Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression. Cell Mol Life Sci. 2018;75:3231–49.

    Article  CAS  Google Scholar 

  • Deleyrolle LP, Reynolds BA. Isolation, expansion, and differentiation of adult Mammalian neural stem and progenitor cells using the neurosphere assay. Methods Mol Biol. 2009;549:91–101.

    Article  CAS  Google Scholar 

  • Dickinson BC, Peltier J, Stone D, Schaffer DV, Chang CJ. Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol. 2011;7:106–12.

    Article  CAS  Google Scholar 

  • Douet JY, Huor A, Cassard H, Lugan S, Aron N, Mesic C, Vilette D, Barrio T, Streichenberger N, Perret-Liaudet A, Delisle MB, Péran P, Deslys JP, Comoy E, Vilotte JL, Goudarzi K, Béringue V, Barria MA, Ritchie DL, Ironside JW, Andréoletti O. Prion strains associated with iatrogenic CJD in French and UK human growth hormone recipients. Acta Neuropathol Commun. 2021;9:145.

    Article  CAS  Google Scholar 

  • Duittoz AH, Hevor T. Primary culture of neural precursors from the ovine central nervous system (CNS). J Neurosci Methods. 2001;107:131–40.

    Article  CAS  Google Scholar 

  • Engler A, Zhang R, Taylor V. Notch and Neurogenesis. Adv Exp Med Biol. 2018;1066:223–34.

    Article  CAS  Google Scholar 

  • Foliaki ST, Groveman BR, Yuan J, Walters R, Zhang S, Tesar P, Zou W, Haigh CL. Pathogenic prion protein isoforms are not present in cerebral organoids generated from asymptomatic donors carrying the E200K mutation associated with familial prion disease. Pathogens. 2020;9:482.

    Article  Google Scholar 

  • Foliaki ST, Schwarz B, Groveman BR, Walters RO, Ferreira NC, Orrù CD, Smith A, Wood A, Schmit OM, Freitag P, Yuan J, Zou W, Bosio CM, Carroll JA, Haigh CL. Neuronal excitatory-to-inhibitory balance is altered in cerebral organoid models of genetic neurological diseases. Mol Brain. 2021;14:156.

    Article  CAS  Google Scholar 

  • Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci. 1995;18:159–92.

    Article  CAS  Google Scholar 

  • Ghaemmaghami S, Phuan PW, Perkins B, Ullman J, May BC, Cohen FE, Prusiner SB. Cell division modulates prion accumulation in cultured cells. Proc Natl Acad Sci U S A. 2007;104:17971–6.

    Article  CAS  Google Scholar 

  • Giandomenico SL, Sutcliffe M, Lancaster MA. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat Protoc. 2021;16:579–602.

    Article  CAS  Google Scholar 

  • Gil-Perotín S, Duran-Moreno M, Cebrián-Silla A, Ramírez M, García-Belda P, García-Verdugo JM. Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec (Hoboken). 2013;296:1435–52.

    Article  Google Scholar 

  • Giri RK, Young R, Pitstick R, Dearmond SJ, Prusiner SB, Carlson GA. Prion infection of mouse neurospheres. Proc Natl Acad Sci U S A. 2006;103:3875–80.

    Article  CAS  Google Scholar 

  • Gonzalez C, Armijo E, Bravo-Alegria J, Becerra-Calixto A, Mays CE, Soto C. Modeling amyloid beta and tau pathology in human cerebral organoids. Mol Psychiatry. 2018;23:2363–74.

    Article  CAS  Google Scholar 

  • Graner E, Mercadante AF, Zanata SM, Forlenza OV, Cabral AL, Veiga SS, Juliano MA, Roesler R, Walz R, Minetti A, Izquierdo I, Martins VR, Brentani RR. Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res. 2000;76:85–92.

    Article  CAS  Google Scholar 

  • Groveman BR, Foliaki ST, Orru CD, Zanusso G, Carroll JA, Race B, Haigh CL. Sporadic Creutzfeldt-Jakob disease prion infection of human cerebral organoids. Acta Neuropathol Commun. 2019;7:90.

    Article  Google Scholar 

  • Groveman BR, Walters R, Haigh CL. Using our mini-brains: cerebral organoids as an improved cellular model for human prion disease. Neural Regen Res. 2020;15:1019–20.

    Article  Google Scholar 

  • Groveman BR, Ferreira NC, Foliaki ST, Walters RO, Winkler CW, Race B, Hughson AG, Zanusso G, Haigh CL. Human cerebral organoids as a therapeutic drug screening model for Creutzfeldt-Jakob disease. Sci Rep. 2021a;11:5165.

    Article  CAS  Google Scholar 

  • Groveman BR, Smith A, Williams K, Haigh CL. Cerebral organoids as a new model for prion disease. PLoS Pathog. 2021b;17:e1009747.

    Article  CAS  Google Scholar 

  • Guentchev M, Hainfellner JA, Trabattoni GR, Budka H. Distribution of parvalbumin-immunoreactive neurons in brain correlates with hippocampal and temporal cortical pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol. 1997;56:1119–24.

    Article  CAS  Google Scholar 

  • Guentchev M, Groschup MH, Kordek R, Liberski PP, Budka H. Severe, early and selective loss of a subpopulation of Gabaergic inhibitory neurons in experimental transmissible spongiform encephalopathies. Brain Pathol. 1998;8:615–23.

    Article  CAS  Google Scholar 

  • Haigh CL, Mcglade AR, Lewis V, Masters CL, Lawson VA, Collins SJ. Acute exposure to prion infection induces transient oxidative stress progressing to be cumulatively deleterious with chronic propagation in vitro. Free Radic Biol Med. 2011;51:594–608.

    Article  CAS  Google Scholar 

  • Hartmann D, De Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lübke T, Lena Illert A, Von Figura K, Saftig P. The disintegrin/metalloprotease ADAM 10 is essential for notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet. 2002;11:2615–24.

    Article  CAS  Google Scholar 

  • Herva ME, Relaño-Ginés A, Villa A, Torres JM. Prion infection of differentiated neurospheres. J Neurosci Methods. 2010;188:270–5.

    Article  CAS  Google Scholar 

  • Horbay R, Bilyy R. Mitochondrial dynamics during cell cycling. Apoptosis. 2016;21:1327–35.

    Article  CAS  Google Scholar 

  • Iwamaru Y, Takenouchi T, Imamura M, Shimizu Y, Miyazawa K, Mohri S, Yokoyama T, Kitani H. Prion replication elicits cytopathic changes in differentiated neurosphere cultures. J Virol. 2013;87:8745–55.

    Article  CAS  Google Scholar 

  • Iwamaru Y, Mathiason CK, Telling GC, Hoover EA. Chronic wasting disease prion infection of differentiated neurospheres. Prion. 2017;11:277–83.

    Article  Google Scholar 

  • Jackson WS. Selective vulnerability to neurodegenerative disease: the curious case of Prion Protein. Dis Model Mech. 2014;7:21–9.

    Article  CAS  Google Scholar 

  • Jurkowski MP, Bettio LK, Woo E, Patten A, Yau S-Y, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: adult neurogenesis throughout the brain. Front Cell Neurosci. 2020;14:293.

    Article  Google Scholar 

  • Kaneko N, Sawada M, Sawamoto K. Mechanisms of neuronal migration in the adult brain. J Neurochem. 2017;141:835–47.

    Article  CAS  Google Scholar 

  • Knight R. Infectious and sporadic prion diseases. Prog Mol Biol Transl Sci. 2017;150:293–318.

    Article  CAS  Google Scholar 

  • Kobayashi A, Kitamoto T, Mizusawa H. Iatrogenic Creutzfeldt-Jakob disease. Handb Clin Neurol. 2018;153:207–18.

    Article  Google Scholar 

  • Kokovay E, Wang Y, Kusek G, Wurster R, Lederman P, Lowry N, Shen Q, Temple S. VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression. Cell Stem Cell. 2012;11:220–30.

    Article  CAS  Google Scholar 

  • Kovalevich J, Santerre M, Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol. 2021;2311:9–23.

    Article  CAS  Google Scholar 

  • Krance SH, Luke R, Shenouda M, Israwi AR, Colpitts SJ, Darwish L, Strauss M, Watts JC. Cellular models for discovering prion disease therapeutics: Progress and challenges. J Neurochem. 2020;153:150–72.

    Article  CAS  Google Scholar 

  • Krejciova Z, Pells S, Cancellotti E, Freile P, Bishop M, Samuel K, Barclay GR, Ironside JW, Manson JC, Turner ML, De Sousa P, Head MW. Human embryonic stem cells rapidly take up and then clear exogenous human and animal prions in vitro. J Pathol. 2011;223:635–45.

    Article  CAS  Google Scholar 

  • Krejciova Z, Alibhai J, Zhao C, Krencik R, Rzechorzek NM, Ullian EM, Manson J, Ironside JW, Head MW, Chandran S. Human stem cell-derived astrocytes replicate human prions in a Prnp genotype-dependent manner. J Exp Med. 2017;214:3481–95.

    Article  CAS  Google Scholar 

  • Ladogana A, Liu Q, Geng Xi Y, Pocchiari M. Proteinase-resistant protein in human neuroblastoma cells infected with brain material from Creutzfeldt-Jakob patient. The Lancet. 1995;345:594–5.

    Article  CAS  Google Scholar 

  • Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9:2329–40.

    Article  CAS  Google Scholar 

  • Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.

    Article  CAS  Google Scholar 

  • Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 2009;457:1128–32.

    Article  Google Scholar 

  • Lee YJ, Baskakov IV. Treatment with normal prion protein delays differentiation and helps to maintain high proliferation activity in human embryonic stem cells. J Neurochem. 2010;114:362–73.

    Article  CAS  Google Scholar 

  • Lee YJ, Baskakov IV. The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. J Neurochem. 2013;124:310–22.

    Article  CAS  Google Scholar 

  • Lee YJ, Baskakov IV. The cellular form of the prion protein guides the differentiation of human embryonic stem cells into neuron-, oligodendrocyte-, and astrocyte-committed lineages. Prion. 2014;8:266–75.

    Article  CAS  Google Scholar 

  • Liang J, Pan Y, Zhang D, Guo C, Shi Y, Wang J, Chen Y, Wang X, Liu J, Guo X, Chen Z, Qiao T, Fan D. Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. FASEB J. 2007;21:2247–56.

    Article  CAS  Google Scholar 

  • Linsenmeier L, Mohammadi B, Wetzel S, Puig B, Jackson WS, Hartmann A, Uchiyama K, Sakaguchi S, Endres K, Tatzelt J, Saftig P, Glatzel M, Altmeppen HC. Structural and mechanistic aspects influencing the ADAM10-mediated shedding of the prion protein. Mol Neurodegener. 2018;13:18.

    Article  Google Scholar 

  • Lopes MH, Hajj GN, Muras AG, Mancini GL, Castro RM, Ribeiro KC, Brentani RR, Linden R, Martins VR. Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci. 2005;25:11330–9.

    Article  CAS  Google Scholar 

  • Loubet D, Dakowski C, Pietri M, Pradines E, Bernard S, Callebert J, Ardila-Osorio H, Mouillet-Richard S, Launay JM, Kellermann O, Schneider B. Neuritogenesis: the prion protein controls β1 integrin signaling activity. FASEB J. 2012;26:678–90.

    Article  CAS  Google Scholar 

  • Mantuano E, Azmoon P, Banki MA, Lam MS, Sigurdson CJ, Gonias SL. A soluble derivative of PrP(C) activates cell-signaling and regulates cell physiology through LRP1 and the NMDA receptor. J Biol Chem. 2020;295:14178–88.

    Article  CAS  Google Scholar 

  • Martellucci S, Manganelli V, Santacroce C, Santilli F, Piccoli L, Sorice M, Mattei V. Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells. Prion. 2018;12:117–26.

    Article  CAS  Google Scholar 

  • Martellucci S, Santacroce C, Santilli F, Piccoli L, Delle Monache S, Angelucci A, Misasi R, Sorice M, Mattei V. Cellular and molecular mechanisms mediated by recPrP(C) involved in the neuronal differentiation process of mesenchymal stem cells. Int J Mol Sci. 2019;20:345.

    Article  Google Scholar 

  • Martín SF, Herva ME, Espinosa JC, Parra B, Castilla J, Brun A, Torres JM. Cell expression of a four extra octarepeat mutated Prpc modifies cell structure and cell cycle regulation. FEBS Lett. 2006;580:4097–104.

    Article  Google Scholar 

  • Martin-Lannerée S, Hirsch TZ, Hernandez-Rapp J, Halliez S, Vilotte JL, Launay JM, Mouillet-Richard S. PrP(C) from stem cells to cancer. Front Cell Dev Biol. 2014;2:55.

    Google Scholar 

  • Martin-Lannerée S, Halliez S, Hirsch TZ, Hernandez-Rapp J, Passet B, Tomkiewicz C, Villa-Diaz A, Torres JM, Launay JM, Béringue V, Vilotte JL, Mouillet-Richard S. The cellular prion protein controls notch signaling in neural stem/progenitor cells. Stem Cells. 2017;35:754–65.

    Article  Google Scholar 

  • Matamoros-Angles A, Gayosso LM, Richaud-Patin Y, Di Domenico A, Vergara C, Hervera A, Sousa A, Fernández-Borges N, Consiglio A, Gavín R, López De Maturana R, Ferrer I, López De Munain A, Raya Á, Castilla J, Sánchez-Pernaute R, Del Río JA. iPS cell cultures from a Gerstmann-Sträussler-Scheinker patient with the Y218N Prnp mutation recapitulate tau pathology. Mol Neurobiol. 2018;55:3033–48.

    Article  CAS  Google Scholar 

  • Mcmahon HE, Mangé A, Nishida N, Créminon C, Casanova D, Lehmann S. Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem. 2001;276:2286–91.

    Article  CAS  Google Scholar 

  • Menon SG, Sarsour EH, Spitz DR, Higashikubo R, Sturm M, Zhang H, Goswami PC. Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer Res. 2003;63:2109–17.

    CAS  Google Scholar 

  • Milhavet O, Casanova D, Chevallier N, Mckay RD, Lehmann S. Neural stem cell model for prion propagation. Stem Cells. 2006;24:2284–91.

    Article  CAS  Google Scholar 

  • Miranda A, Pericuesta E, Ramírez M, Gutierrez-Adan A. Prion protein expression regulates embryonic stem cell pluripotency and differentiation. PLoS One. 2011;6:e18422.

    Article  CAS  Google Scholar 

  • Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O. Signal transduction through prion protein. Science. 2000a;289:1925–8.

    Article  CAS  Google Scholar 

  • Mouillet-Richard S, Mutel V, Loric S, Tournois C, Launay JM, Kellermann O. Regulation by neurotransmitter receptors of serotonergic or catecholaminergic neuronal cell differentiation. J Biol Chem. 2000b;275:9186–92.

    Article  CAS  Google Scholar 

  • Mouillet-Richard S, Nishida N, Pradines E, Laude H, Schneider B, Féraudet C, Grassi J, Launay JM, Lehmann S, Kellermann O. Prions impair bioaminergic functions through serotonin- or catecholamine-derived neurotoxins in neuronal cells. J Biol Chem. 2008;283:23782–90.

    Article  CAS  Google Scholar 

  • Mouillet-Richard S, Ghazi A, Laurent-Puig P. The cellular prion protein and the hallmarks of cancer. Cancers (Basel). 2021;13:5032.

    Article  CAS  Google Scholar 

  • Muraguchi T, Takegami Y, Ohtsuka T, Kitajima S, Chandana EP, Omura A, Miki T, Takahashi R, Matsumoto N, Ludwig A, Noda M, Takahashi C. Reck modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat Neurosci. 2007;10:838–45.

    Article  CAS  Google Scholar 

  • Nogueira AB, Hoshino HSR, Ortega NC, Dos Santos BGS, Teixeira MJ. Adult human neurogenesis: early studies clarify recent controversies and go further. Metab Brain Dis. 2021;37(1):153–72.

    Article  Google Scholar 

  • Obermair FJ, Fiorelli R, Schroeter A, Beyeler S, Blatti C, Zoerner B, Thallmair M. A novel classification of quiescent and transit amplifying adult neural stem cells by surface and metabolic markers permits a defined simultaneous isolation. Stem Cell Res. 2010;5:131–43.

    Article  CAS  Google Scholar 

  • Pantera B, Bini C, Cirri P, Paoli P, Camici G, Manao G, Caselli A. PrPc activation induces neurite outgrowth and differentiation in PC12 cells: role for caveolin-1 in the signal transduction pathway. J Neurochem. 2009;110:194–207.

    Article  CAS  Google Scholar 

  • Peden AH, Mcguire LI, Appleford NEJ, Mallinson G, Wilham JM, Orrú CD, Caughey B, Ironside JW, Knight RS, Will RG, Green AJE, Head MW. Sensitive and specific detection of sporadic Creutzfeldt-Jakob disease brain prion protein using real-time quaking-induced conversion. J Gen Virol. 2012;93:438–49.

    Article  CAS  Google Scholar 

  • Peralta OA, Huckle WR, Eyestone WH. Expression and knockdown of cellular prion protein (PrPc) in differentiating mouse embryonic stem cells. Differentiation. 2011;81:68–77.

    Article  CAS  Google Scholar 

  • Pineau H, Sim VL. From cell culture to organoids-model Systems for investigating prion strain characteristics. Biomol Ther. 2021;11:106.

    CAS  Google Scholar 

  • Pradines E, Hernandez-Rapp J, Villa-Diaz A, Dakowski C, Ardila-Osorio H, Haik S, Schneider B, Launay JM, Kellermann O, Torres JM, Mouillet-Richard S. Pathogenic prions deviate PrP(C) signaling in neuronal cells and impair A-beta clearance. Cell Death Dis. 2013;4:e456.

    Article  CAS  Google Scholar 

  • Prodromidou K, Papastefanaki F, Sklaviadis T, Matsas R. Functional cross-talk between the cellular prion protein and the neural cell adhesion molecule is critical for neuronal differentiation of neural stem/precursor cells. Stem Cells. 2014;32:1674–87.

    Article  CAS  Google Scholar 

  • Renner M, Lancaster MA, Bian S, Choi H, Ku T, Peer A, Chung K, Knoblich JA. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 2017;36:1316–29.

    Article  CAS  Google Scholar 

  • Ryskalin L, Biagioni F, Busceti CL, Giambelluca MA, Morelli L, Frati A, Fornai F. The role of cellular prion protein in promoting stemness and differentiation in cancer. Cancers (Basel). 2021;13:170.

    Article  CAS  Google Scholar 

  • Sakaguchi S, Shintani S, Kamio K, Sekiya A, Kato S, Muroi Y, Horiuchi M, Furuoka H. Selective neuronal vulnerability is involved in cerebellar lesions of Guinea pigs infected with bovine spongiform encephalopathy (BSE) prions: Immunohistochemical and electron microscopic investigations. Neuropathology. 2020;40:167–79.

    Article  CAS  Google Scholar 

  • Salazar SV, Strittmatter SM. Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimer’s disease. Biochem Biophys Res Commun. 2017;483:1143–7.

    Article  CAS  Google Scholar 

  • Santos DM, Xavier JM, Morgado AL, Solá S, Rodrigues CM. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation. PLoS One. 2012;7:e33468.

    Article  CAS  Google Scholar 

  • Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol. 2005;169:341–54.

    Article  CAS  Google Scholar 

  • Sarsour EH, Venkataraman S, Kalen AL, Oberley LW, Goswami PC. Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell. 2008;7:405–17.

    Article  CAS  Google Scholar 

  • Sarsour EH, Kalen AL, Xiao Z, Veenstra TD, Chaudhuri L, Venkataraman S, Reigan P, Buettner GR, Goswami PC. Manganese superoxide dismutase regulates a metabolic switch during the mammalian cell cycle. Cancer Res. 2012;72:3807–16.

    Article  CAS  Google Scholar 

  • Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ, Crossin KL, Edelman GM, Dearmond SJ, Cohen FE, Prusiner SB. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol. 2001;314:1209–25.

    Article  CAS  Google Scholar 

  • Schneider B, Mutel V, Pietri M, Ermonval M, Mouillet-Richard S, Kellermann O. NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci U S A. 2003;100:13326–31.

    Article  CAS  Google Scholar 

  • Sinclair L, Lewis V, Collins SJ, Haigh CL. Cytosolic caspases mediate mislocalised SOD2 depletion in an in vitro model of chronic prion infection. Dis Model Mech. 2013;6:952–63.

    CAS  Google Scholar 

  • Spurlock B, Tullet J, Hartman JLT, Mitra K. Interplay of mitochondrial fission-fusion with cell cycle regulation: possible impacts on stem cell and organismal aging. Exp Gerontol. 2020;135:110919.

    Article  CAS  Google Scholar 

  • Steele AD, Emsley JG, Ozdinler PH, Lindquist S, Macklis JD. Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci U S A. 2006;103:3416–21.

    Article  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  Google Scholar 

  • Taylor DR, Parkin ET, Cocklin SL, Ault JR, Ashcroft AE, Turner AJ, Hooper NM. Role of Adams in the ectodomain shedding and conformational conversion of the prion protein. J Biol Chem. 2009;284:22590–600.

    Article  CAS  Google Scholar 

  • Uttley L, Carroll C, Wong R, Hilton DA, Stevenson M. Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. Lancet Infect Dis. 2020;20:e2–e10.

    Article  Google Scholar 

  • Watts JC, Prusiner SB. Experimental models of inherited PrP prion diseases. Cold Spring Harb Perspect Med. 2017;7:a027151.

    Article  Google Scholar 

  • Wilham JM, Orrú CD, Bessen RA, Atarashi R, Sano K, Race B, Meade-White KD, Taubner LM, Timmes A, Caughey B. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010;6:e1001217.

    Article  Google Scholar 

  • Wong RW, Guillaud L. The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev. 2004;15:147–56.

    Article  CAS  Google Scholar 

  • Yadavalli R, Guttmann RP, Seward T, Centers AP, Williamson RA, Telling GC. Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem. 2004;279:21948–56.

    Article  CAS  Google Scholar 

  • You H, Tsutsui S, Hameed S, Kannanayakal TJ, Chen L, Xia P, Engbers JD, Lipton SA, Stys PK, Zamponi GW. Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A. 2012;109:1737–42.

    Article  CAS  Google Scholar 

  • Young R, Passet B, Vilotte M, Cribiu EP, Béringue V, Le Provost F, Laude H, Vilotte JL. The prion or the related Shadoo protein is required for early mouse embryogenesis. FEBS Let. 2009;583:3296–3300.

    Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin I, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Intramural Research Program of the NIH (NIAID). The author would like to thank Dr. James Carroll and Dr. Bradley Groveman for critical review of the manuscript. Figure illustrations were created with BioRender.com

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathryn L. Haigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haigh, C.L. (2023). Stem Cell Models in Prion Research. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-20565-1_16

Download citation

Publish with us

Policies and ethics