Skip to main content

The Hidden Benefits of Limited Communication and Slow Sensing in Collective Monitoring of Dynamic Environments

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Abstract

Most of our experiences, as well as our intuition, are usually built on a linear understanding of systems and processes. Complex systems in general, and more specifically swarm robotics in this context, leverage non-linear effects to self-organize and to ensure that ‘more is different’. In previous work, the non-linear and therefore counter-intuitive effect of ‘less is more’ was shown for a site-selection swarm scenario. Although it seems intuitive that being able to communicate over longer distances should be beneficial, swarms were found to sometimes profit from communication limitations. Here, we build on this work and show the same effect for the collective perception scenario in a dynamic environment. We also find an additional effect that we call ‘slower is faster’: in certain situations, swarms benefit from sampling their environment less frequently. Our findings are supported by an intensive empirical approach and a mean-field model. All our experimental work is based on simulations using the ARGoS simulator extended with a simulator of the smart environment for the Kilobot robot called Kilogrid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The current geopolitical situation motivated our choice of tile color  .

References

  1. Antoun, A., Valentini, G., Hocquard, E., Wiandt, B., Trianni, V., Dorigo, M.: Kilogrid: a modular virtualization environment for the Kilobot robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 3809–3814. IEEE (2016). https://doi.org/10.1109/IROS.2016.7759560

  2. Aust, T., Reina, A.: Open-source code for simulating the Kilogrid in ARGoS. https://github.com/tilly111/adaptive_symmetry_breaking

  3. Bartashevich, P., Mostaghim, S.: Benchmarking collective perception: new task difficulty metrics for collective decision-making. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 699–711. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_58

    Chapter  Google Scholar 

  4. Bartashevich, P., Mostaghim, S.: Multi-featured collective perception with evidence theory: tackling spatial correlations. Swarm Intell. 15(1), 83–110 (2021). https://doi.org/10.1007/s11721-021-00192-8

    Article  Google Scholar 

  5. Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the random waypoint mobility model. Wirel. Netw. 10(5), 555–567 (2004). https://doi.org/10.1023/B:WINE.0000036458.88990.e5

    Article  Google Scholar 

  6. Soorati, M.D., Krome, M., Mora-Mendoza, M., Ghofrani, J., Hamann, H.: Plasticity in collective decision-making for robots: creating global reference frames, detecting dynamic environments, and preventing lock-ins. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 4100–4105. IEEE (2019). https://doi.org/10.1109/IROS40897.2019.8967777

  7. Ebert, J.T., Gauci, M., Mallmann-Trenn, F., Nagpal, R.: Bayes bots: collective Bayesian decision-making in decentralized robot swarms. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7186–7192. IEEE (2020). https://doi.org/10.1109/ICRA40945.2020.9196584

  8. Ebert, J.T., Gauci, M., Nagpal, R.: Multi-feature collective decision making in robot swarms. In: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Richland, SC, vol. 3, pp. 1711–1719 (2018)

    Google Scholar 

  9. Gershenson, C., Helbing, D.: When slower is faster. Complexity 21(2), 9–15 (2015). https://doi.org/10.1002/cplx.21736

    Article  Google Scholar 

  10. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2

    Book  Google Scholar 

  11. Lee, C., Lawry, J., Winfield, A.F.: Negative updating applied to the best-of-n problem with noisy qualities. Swarm Intell. 15(1), 111–143 (2021). https://doi.org/10.1007/s11721-021-00188-4

    Article  Google Scholar 

  12. Nikolaidis, E., Sabo, C., Marshal, J.A.R., Reina, A.: Characterisation and upgrade of the communication between overhead controllers and Kilobots. Technical report, White Rose Research Online (2017)

    Google Scholar 

  13. Parker, C.A.C., Zhang, H.: Biologically inspired decision making for collective robotic systems. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 1, pp. 375–380. IEEE (2004). https://doi.org/10.1109/IROS.2004.1389381

  14. Pinciroli, C., Talamali, M.S., Reina, A., Marshall, J.A.R., Trianni, V.: Simulating Kilobots within ARGoS: models and experimental validation. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 176–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_14

    Chapter  Google Scholar 

  15. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/s11721-012-0072-5

    Article  Google Scholar 

  16. Prasetyo, J., De Masi, G., Ferrante, E.: Collective decision making in dynamic environments. Swarm Intell. 13(3), 217–243 (2019). https://doi.org/10.1007/s11721-019-00169-8

    Article  Google Scholar 

  17. Prasetyo, J., De Masi, G., Ranjan, P., Ferrante, E.: The best-of-n problem with dynamic site qualities: achieving adaptability with stubborn individuals. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 239–251. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_19

    Chapter  Google Scholar 

  18. Rahmani, P., Peruani, F., Romanczuk, P.: Flocking in complex environments-attention trade-offs in collective information processing. PLoS Comput. Biol. 16(4), 1–18 (2020). https://doi.org/10.1371/journal.pcbi.1007697

    Article  Google Scholar 

  19. Reina, A., Cope, A.J., Nikolaidis, E., Marshall, J.A.R., Sabo, C.: ARK: augmented reality for Kilobots. IEEE Robot. Autom. Lett. 2(3), 1755–1761 (2017). https://doi.org/10.1109/LRA.2017.2700059

    Article  Google Scholar 

  20. Reina, A., Ioannou, V., Chen, J., Lu, L., Kent, C., Marshall, J.A.: Robots as actors in a film: no war, a robot story. arXiv preprint arXiv:1910.12294 (2019)

  21. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975 (2014). https://doi.org/10.1016/j.robot.2013.08.006

    Article  Google Scholar 

  22. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014). https://doi.org/10.1126/science.1254295

    Article  Google Scholar 

  23. Shan, Q., Mostaghim, S.: Collective decision making in swarm robotics with distributed Bayesian hypothesis testing. In: Dorigo, M., et al. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 55–67. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60376-2_5

    Chapter  Google Scholar 

  24. Shan, Q., Mostaghim, S.: Discrete collective estimation in swarm robotics with distributed Bayesian belief sharing. Swarm Intell. 15(4), 377–402 (2021). https://doi.org/10.1007/s11721-021-00201-w

    Article  Google Scholar 

  25. Slobodkin, L.B.: Growth and Regulation of Animal Populations. Holt, Rinehart and Winston, New York (1961)

    Google Scholar 

  26. Stark, H.U., Tessone, C.J., Schweitzer, F.: Decelerating microdynamics can accelerate macrodynamics in the voter model. Phys. Rev. Lett. 101(1), 018701 (2008). https://doi.org/10.1103/PhysRevLett.101.018701

    Article  Google Scholar 

  27. Stark, H.U., Tessone, C.J., Schweitzer, F.: Slower is faster: fostering consensus formation by heterogeneous inertia. Adv. Complex Syst. 11(4), 551–563 (2008). https://doi.org/10.1142/S0219525908001805

    Article  MathSciNet  MATH  Google Scholar 

  28. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Richland, SC, vol. 3, pp. 541–549 (2018)

    Google Scholar 

  29. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Blockchain technology secures robot swarms: a comparison of consensus protocols and their resilience to Byzantine robots. Front. Robot. AI 7, 54 (2020). https://doi.org/10.3389/frobt.2020.00054

    Article  Google Scholar 

  30. Talamali, M.S., Saha, A., Marshall, J.A.R., Reina, A.: When less is more: robot swarms adapt better to changes with constrained communication. Sci. Robot. 5(56), eabf1416 (2021). https://doi.org/10.1126/scirobotics.abf1416

  31. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision-making in a 100-robot swarm. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015), pp. 4216–4217. AAAI Press (2015)

    Google Scholar 

  32. Valentini, G., et al.: Kilogrid: a novel experimental environment for the Kilobot robot. Swarm Intell. 12(3), 245–266 (2018). https://doi.org/10.1007/s11721-018-0155-z

    Article  Google Scholar 

  33. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of environmental features in a robot swarm. In: ANTS 2016. LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_6

    Chapter  Google Scholar 

  34. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017). https://doi.org/10.3389/frobt.2017.00009

    Article  Google Scholar 

  35. Zakir, R., Dorigo, M., Reina, A.: Robot swarms break decision deadlocks in collective perception through cross-inhibition. In: Dorigo, M., et al. (eds.) ANTS 2022. LNCS, vol. 13491, pp. 209–221. Springer, Cham (2022)

    Google Scholar 

Download references

Acknowledgements

The authors thank Anthony Antoun, Marco Trabattoni, and Jonas Kuckling for technical support concerning Kilogrid and simulations on HPC. MD and AR acknowledge support from the Belgian F.R.S.-FNRS, of which they are Research Director and Chargé de Recherches, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Till Aust or Andreagiovanni Reina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aust, T., Talamali, M.S., Dorigo, M., Hamann, H., Reina, A. (2022). The Hidden Benefits of Limited Communication and Slow Sensing in Collective Monitoring of Dynamic Environments. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics