Skip to main content

MTTrans: Cross-domain Object Detection with Mean Teacher Transformer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13669))

Included in the following conference series:

Abstract

Recently, DEtection TRansformer (DETR), an end-to-end object detection pipeline, has achieved promising performance. However, it requires large-scale labeled data and suffers from domain shift, especially when no labeled data is available in the target domain. To solve this problem, we propose an end-to-end cross-domain detection Transformer based on the mean teacher framework, MTTrans, which can fully exploit unlabeled target domain data in object detection training and transfer knowledge between domains via pseudo labels. We further propose the comprehensive multi-level feature alignment to improve the pseudo labels generated by the mean teacher framework taking advantage of the cross-scale self-attention mechanism in Deformable DETR. Image and object features are aligned at the local, global, and instance levels with domain query-based feature alignment (DQFA), bi-level graph-based prototype alignment (BGPA), and token-wise image feature alignment (TIFA). On the other hand, the unlabeled target domain data pseudo-labeled and available for the object detection training by the mean teacher framework can lead to better feature extraction and alignment. Thus, the mean teacher framework and the comprehensive multi-level feature alignment can be optimized iteratively and mutually based on the architecture of Transformers. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance in three domain adaptation scenarios, especially the result of Sim10k to Cityscapes scenario is remarkably improved from 52.6 mAP to 57.9 mAP. Code will be released https://github.com/Lafite-Yu/MTTrans-OpenSource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, Y., Mei, J., Yuille, A.L., Xie, C.: Are transformers more robust than cnns? Adv. Neural Inf. Process. Syst. 34, 26831–26843 (2021)

    Google Scholar 

  2. Cai, Q., et al.: Exploring object relation in mean teacher for cross-domain detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11457–11466 (2019)

    Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  4. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster r-cnn for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  5. Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019)

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. Ieee (2009)

    Google Scholar 

  8. Deng, J., Li, W., Chen, Y., Duan, L.: Unbiased mean teacher for cross-domain object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4091–4101 (2021)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  10. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  11. Guo, Q., Qiu, X., Liu, P., Shao, Y., Xue, X., Zhang, Z.: Star-transformer. arXiv preprint arXiv:1902.09113 (2019)

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hsu, C.-C., Tsai, Y.-H., Lin, Y.-Y., Yang, M.-H.: Every pixel matters: center-aware feature alignment for domain adaptive object detector. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 733–748. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_42

    Chapter  Google Scholar 

  15. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? arXiv preprint arXiv:1610.01983 (2016)

  16. Kim, T., Jeong, M., Kim, S., Choi, S., Kim, C.: Diversify and match: a domain adaptive representation learning paradigm for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12456–12465 (2019)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  19. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9404–9413 (2019)

    Google Scholar 

  20. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  21. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  22. Luo, Z., et al.: Unsupervised domain adaptive 3D detection with multi-level consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8866–8875 (2021)

    Google Scholar 

  23. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  25. Rezaeianaran, F., Shetty, R., Aljundi, R., Reino, D.O., Zhang, S., Schiele, B.: Seeking similarities over differences: similarity-based domain alignment for adaptive object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9204–9213 (2021)

    Google Scholar 

  26. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6956–6965 (2019)

    Google Scholar 

  27. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vision 126(9), 973–992 (2018)

    Article  Google Scholar 

  28. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural Inf. Process. Syst. 33, 596–608 (2020)

    Google Scholar 

  29. Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A simple semi-supervised learning framework for object detection. arXiv preprint arXiv:2005.04757 (2020)

  30. Sun, Q., et al.: Sugar: subgraph neural network with reinforcement pooling and self-supervised mutual information mechanism. In: Proceedings of the Web Conference 2021, pp. 2081–2091 (2021)

    Google Scholar 

  31. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  33. Wang, W., et al.: Exploring sequence feature alignment for domain adaptive detection transformers. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1730–1738 (2021)

    Google Scholar 

  34. Xu, C.D., Zhao, X.R., Jin, X., Wei, X.S.: Exploring categorical regularization for domain adaptive object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11724–11733 (2020)

    Google Scholar 

  35. Xu, M., et al.: End-to-end semi-supervised object detection with soft teacher. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3060–3069 (2021)

    Google Scholar 

  36. Xu, M., Wang, H., Ni, B., Tian, Q., Zhang, W.: Cross-domain detection via graph-induced prototype alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12355–12364 (2020)

    Google Scholar 

  37. Xu, T., Chen, W., Wang, P., Wang, F., Li, H., Jin, R.: Cdtrans: cross-domain transformer for unsupervised domain adaptation. arXiv preprint arXiv:2109.06165 (2021)

  38. Yang, J., Liu, J., Xu, N., Huang, J.: Tvt: transferable vision transformer for unsupervised domain adaptation. arXiv preprint arXiv:2108.05988 (2021)

  39. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: point set representation for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9657–9666 (2019)

    Google Scholar 

  40. Yu, F., et al.: Bdd100k: a diverse driving video database with scalable annotation tooling, vol. 2, no. 5, p. 6. arXiv preprint arXiv:1805.04687 (2018)

  41. Zhang, C., et al.: Delving deep into the generalization of vision transformers under distribution shifts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7277–7286 (2022)

    Google Scholar 

  42. Zhang, J., Huang, J., Luo, Z., Zhang, G., Lu, S.: Da-detr: domain adaptive detection transformer by hybrid attention. arXiv preprint arXiv:2103.17084 (2021)

  43. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)

    Google Scholar 

  44. Zhong, C., Wang, J., Feng, C., Zhang, Y., Sun, J., Yokota, Y.: Pica: point-wise instance and centroid alignment based few-shot domain adaptive object detection with loose annotations. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2329–2338 (2022)

    Google Scholar 

  45. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021)

    Google Scholar 

  46. Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective cross-domain alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 687–696 (2019)

    Google Scholar 

  47. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgment

We thank Xiaoqi Li and Zhaoqing Wang for their help with the manuscript revision and the anonymous reviewers for their helpful comments to improve the paper. The authors of this paper are supported by the NSFC through grant No.U20B2053, and we also thanks the support from Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanghang Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7092 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, J. et al. (2022). MTTrans: Cross-domain Object Detection with Mean Teacher Transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics