Skip to main content

SocialVAE: Human Trajectory Prediction Using Timewise Latents

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Predicting pedestrian movement is critical for human behavior analysis and also for safe and efficient human-agent interactions. However, despite significant advancements, it is still challenging for existing approaches to capture the uncertainty and multimodality of human navigation decision making. In this paper, we propose SocialVAE, a novel approach for human trajectory prediction. The core of SocialVAE is a timewise variational autoencoder architecture that exploits stochastic recurrent neural networks to perform prediction, combined with a social attention mechanism and a backward posterior approximation to allow for better extraction of pedestrian navigation strategies. We show that SocialVAE improves current state-of-the-art performance on several pedestrian trajectory prediction benchmarks, including the ETH/UCY benchmark, Stanford Drone Dataset, and SportVU NBA movement dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  2. Amirian, J., Hayet, J.B., Pettré, J.: Social ways: learning multi-modal distributions of pedestrian trajectories with GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  3. Bae, I., Park, J.H., Jeon, H.G.: Non-probability sampling network for stochastic human trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6477–6487 (2022)

    Google Scholar 

  4. Ballan, L., Castaldo, F., Alahi, A., Palmieri, F., Savarese, S.: Knowledge transfer for scene-specific motion prediction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 697–713. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_42

    Chapter  Google Scholar 

  5. Bayer, J., Osendorfer, C.: Learning stochastic recurrent networks. arXiv preprint arXiv:1411.7610 (2014)

  6. Becker, S., Hug, R., Hübner, W., Arens, M.: An evaluation of trajectory prediction approaches and notes on the TrajNet benchmark. arXiv preprint arXiv:1805.07663 (2018)

  7. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: International Symposium of Robotics Research, pp. 3–19 (2011)

    Google Scholar 

  8. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  9. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11618–11628 (2020)

    Google Scholar 

  10. Cao, Z., Gao, H., Mangalam, K., Cai, Q.-Z., Vo, M., Malik, J.: Long-term human motion prediction with scene context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_23

    Chapter  Google Scholar 

  11. Chandra, R., Bhattacharya, U., Bera, A., Manocha, D.: Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  12. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  13. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A recurrent latent variable model for sequential data. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  14. Fraccaro, M., Sønderby, S.K., Paquet, U., Winther, O.: Sequential neural models with stochastic layers. In: Advances in Neural Information Processing Systems 29 (2016)

    Google Scholar 

  15. Giuliari, F., Hasan, I., Cristani, M., Galasso, F.: Transformer networks for trajectory forecasting. In: IEEE International Conference on Pattern Recognition, pp. 10335–10342 (2021)

    Google Scholar 

  16. Goyal, A., Sordoni, A., Côté, M.A., Ke, N.R., Bengio, Y.: Z-forcing: Training stochastic recurrent networks. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  17. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  18. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)

    Article  Google Scholar 

  19. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  20. Ivanovic, B., Pavone, M.: The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2375–2384 (2019)

    Google Scholar 

  21. Karamouzas, I., Skinner, B., Guy, S.J.: Universal power law governing pedestrian interactions. Phys. Rev. Lett. 113(23), 238701 (2014)

    Article  Google Scholar 

  22. Kim, K., Lee, D., Essa, I.: Gaussian process regression flow for analysis of motion trajectories. In: IEEE International Conference on Computer Vision, pp. 1164–1171 (2011)

    Google Scholar 

  23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Bengio, Y., LeCun, Y. (eds.) International Conference on Learning Representations (2014)

    Google Scholar 

  24. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_15

    Chapter  Google Scholar 

  25. Kochkov, D., Smith, J.A., Alieva, A., Wang, Q., Brenner, M.P., Hoyer, S.: Machine learning-accelerated computational fluid dynamics. Proc. National Acad. Sci. 118(21) (2021)

    Google Scholar 

  26. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer Graphics Forum, vol. 26, pp. 655–664. Wiley Online Library (2007)

    Google Scholar 

  27. Linou, K., Linou, D., de Boer, M.: NBA player movements. github.com/linouk23/NBA-Player-Movements (2016)

    Google Scholar 

  28. Makansi, O., et al.: You mostly walk alone: analyzing feature attribution in trajectory prediction. In: International Conference on Learning Representations (2022)

    Google Scholar 

  29. Mangalam, K., An, Y., Girase, H., Malik, J.: From goals, waypoints & paths to long term human trajectory forecasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15233–15242 (2021)

    Google Scholar 

  30. Mangalam, K., Girase, H., Agarwal, S., Lee, K.-H., Adeli, E., Malik, J., Gaidon, A.: It is not the journey but the destination: endpoint conditioned trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 759–776. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_45

    Chapter  Google Scholar 

  31. Marchetti, F., Becattini, F., Seidenari, L., Bimbo, A.D.: Mantra: memory augmented networks for multiple trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7143–7152 (2020)

    Google Scholar 

  32. Olivier, A.H., Marin, A., Crétual, A., Pettré, J.: Minimal predicted distance: a common metric for collision avoidance during pairwise interactions between walkers. Gait & Posture 36(3), 399–404 (2012)

    Article  Google Scholar 

  33. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems 29 (2016)

    Google Scholar 

  34. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: IEEE International Conference on Computer Vision, pp. 261–268 (2009)

    Google Scholar 

  35. Pradhan, N., Burg, T., Birchfield, S.: Robot crowd navigation using predictive position fields in the potential function framework. In: Proceedings of the 2011 American control conference, pp. 4628–4633. IEEE (2011)

    Google Scholar 

  36. Ravuri, S., et al.: Skilful precipitation nowcasting using deep generative models of radar. Nature 597(7878), 672–677 (2021)

    Article  Google Scholar 

  37. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_33

    Chapter  Google Scholar 

  38. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: Sophie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)

    Google Scholar 

  39. Sadeghian, A., Legros, F., Voisin, M., Vesel, R., Alahi, A., Savarese, S.: Car-Net: clairvoyant attentive recurrent network. In: European Conference on Computer Vision, pp. 151–167 (2018)

    Google Scholar 

  40. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_40

    Chapter  Google Scholar 

  41. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.: Learning to simulate complex physics with graph networks. In: International Conference on Machine Learning, pp. 8459–8468 (2020)

    Google Scholar 

  42. Schöller, C., Aravantinos, V., Lay, F., Knoll, A.C.: What the constant velocity model can teach us about pedestrian motion prediction. IEEE Robotics Autom. Lett. 5(2), 1696–1703 (2020)

    Article  Google Scholar 

  43. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. Adv. Neural. Inf. Process. Syst. 28, 3483–3491 (2015)

    Google Scholar 

  44. Trautman, P., Krause, A.: Unfreezing the robot: navigation in dense, interacting crowds. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 797–803 (2010)

    Google Scholar 

  45. Van Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International Conference on Machine Learning, pp. 1747–1756 (2016)

    Google Scholar 

  46. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  47. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  48. Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: IEEE international Conference on Robotics and Automation, pp. 4601–4607 (2018)

    Google Scholar 

  49. Wang, C., Wang, Y., Xu, M., Crandall, D.: Stepwise goal-driven networks for trajectory prediction. IEEE Robot. Autom. Lett. (2022)

    Google Scholar 

  50. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 283–298 (2007)

    Article  Google Scholar 

  51. Weyn, J.A., Durran, D.R., Caruana, R.: Can machines learn to predict weather? using deep learning to predict gridded 500-HPA geopotential height from historical weather data. J. Adv. Model. Earth Syst. 11(8), 2680–2693 (2019)

    Article  Google Scholar 

  52. Xu, C., Mao, W., Zhang, W., Chen, S.: Remember intentions: retrospective-memory-based trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6488–6497 (2022)

    Google Scholar 

  53. Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1345–1352 (2011)

    Google Scholar 

  54. Yao, Y., Atkins, E., Johnson-Roberson, M., Vasudevan, R., Du, X.: BiTraP: bi-directional pedestrian trajectory prediction with multi-modal goal estimation. IEEE Robot. Autom. Lett. 6(2), 1463–1470 (2021)

    Article  Google Scholar 

  55. Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S.: Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 507–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_30

    Chapter  Google Scholar 

  56. Yuan, Y., Weng, X., Ou, Y., Kitani, K.: Agentformer: agent-aware transformers for socio-temporal multi-agent forecasting. arXiv preprint arXiv:2103.14023 (2021)

  57. Yue, Y., Lucey, P., Carr, P., Bialkowski, A., Matthews, I.: Learning fine-grained spatial models for dynamic sports play prediction. In: IEEE International Conference on Data Mining, pp. 670–679 (2014)

    Google Scholar 

  58. Zamboni, S., Kefato, Z.T., Girdzijauskas, S., Norén, C., Dal Col, L.: Pedestrian trajectory prediction with convolutional neural networks. Pattern Recogn. 121, 108252 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant No. IIS-2047632.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 733 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, P., Hayet, JB., Karamouzas, I. (2022). SocialVAE: Human Trajectory Prediction Using Timewise Latents. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19772-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19771-0

  • Online ISBN: 978-3-031-19772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics