Skip to main content

A Notion of Equivalence for Refactorings with Abstract Execution

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Software Engineering (ISoLA 2022)
  • The original version of this chapter was revised: The sentence in the 4th paragraph of section 5 “Discussion” has been updated. The correction to this chapter is available at https://doi.org/10.1007/978-3-031-19756-7_24

Abstract

Relational verification through dynamic logic is a promising approach for verifying object oriented programs. Recent advances from symbolic to abstract executions have enabled reasoning about incomplete/abstract versions of such programs. This has proven fruitful in the exploration of correctness of refactorings primarily related to code blocks in Java. In this paper we explore further types of equivalent transformations and refactorings and discuss the challenges that still need to be overcome for full round-trip correctness of refactorings in object-oriented languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 17 October 2022

    A correction has been published.

Notes

  1. 1.

    We say “like” as JML does not deal with abstract Java programs.

  2. 2.

    Available at https://github.com/selabhvl/REFINITY-abstractallocate.

  3. 3.

    The counter is indeed implicit, as the order \(<_h\) cannot be accessed by the proof system.

  4. 4.

    We deviate here from the original definition for example’s sake.

References

  1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deductive Software Verification - The KeY Book - From Theory to Practice, Lecture Notes in Computer Science, vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

  2. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of symbolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018). https://doi.org/10.1145/3182657

  3. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_17

    Chapter  Google Scholar 

  4. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition. In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), Pacific Grove, CA, USA, 28–30 June 2004, pp. 100–114. IEEE Computer Society (2004). https://doi.org/10.1109/CSFW.2004.17

  5. Barthe, G., Eilers, R., Georgiou, P., Gleiss, B., Kovács, L., Maffei, M.: Verifying relational properties using trace logic. In: Barrett, C.W., Yang, J. (eds.) 2019 Formal Methods in Computer Aided Design, FMCAD 2019, San Jose, CA, USA, 22–25 October 2019, pp. 170–178. IEEE (2019). https://doi.org/10.23919/FMCAD.2019.8894277

  6. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from microkernel verification - specification is the new bottleneck. In: SSV. EPTCS, vol. 102, pp. 18–32 (2012)

    Google Scholar 

  7. Beckert, B., Bruns, D., Klebanov, V., Scheben, C., Schmitt, P.H., Ulbrich, M.: Information flow in object-oriented software. In: Gupta, G., Peña, R. (eds.) LOPSTR 2013. LNCS, vol. 8901, pp. 19–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14125-1_2

    Chapter  Google Scholar 

  8. Beckert, B., Ulbrich, M.: Trends in relational program verification. In: Principled Software Development, pp. 41–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98047-8_3

    Chapter  Google Scholar 

  9. Bubel, R., Din, C.C., Hähnle, R., Nakata, K.: A dynamic logic with traces and coinduction. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 307–322. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_21

    Chapter  MATH  Google Scholar 

  10. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450, pp. 193–209. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32004-3_20

    Chapter  Google Scholar 

  11. Din, C.C., Owe, O.: A sound and complete reasoning system for asynchronous communication with shared futures. J. Log. Algebraic Methods Program. 83(5–6), 360–383 (2014). https://doi.org/10.1016/j.jlamp.2014.03.003

    Article  MathSciNet  MATH  Google Scholar 

  12. Dovland, J., Johnsen, E.B., Owe, O., Yu, I.C.: A proof system for adaptable class hierarchies. J. Log. Algebraic Methods Program. 84(1), 37–53 (2015). https://doi.org/10.1016/j.jlamp.2014.09.001

    Article  MathSciNet  MATH  Google Scholar 

  13. Eilertsen, A.M., Bagge, A.H., Stolz, V.: Safer refactorings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 517–531. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_36

    Chapter  Google Scholar 

  14. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley object technology series. Addison-Wesley (1999)

    Google Scholar 

  15. Fowler, M.: Refactoring: Improving the Design of Existing Code, 2nd edn. Addison-Wesley Signature Series (Fowler), Addison-Wesley (2018)

    Google Scholar 

  16. Garrido, A., Meseguer, J.: Formal specification and verification of java refactorings. In: 2006 Sixth IEEE International Workshop on Source Code Analysis and Manipulation, pp. 165–174. IEEE (2006)

    Google Scholar 

  17. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_18

    Chapter  MATH  Google Scholar 

  18. Huisman, M., Ahrendt, W., Bruns, D., Hentschel, M.: Formal specification with jml. Technical Report 10, Karlsruher Institut für Technologie (KIT) (2014). https://doi.org/10.5445/IR/1000041881

  19. Kamburjan, E.: Behavioral program logic. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 391–408. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29026-9_22

    Chapter  Google Scholar 

  20. Kamburjan, E., Wasser, N.: Deductive verification of programs with underspecified semantics by model extraction. CoRR abs/2110.01964 (2021)

    Google Scholar 

  21. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler IR - combining static verification and dynamic analysis. J. Autom. Reason. 60(3), 337–363 (2018). https://doi.org/10.1007/s10817-017-9433-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Myers, C.J.: Formal verification of genetic circuits. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 5–5. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_5

    Chapter  Google Scholar 

  23. McCarthy, J.: Towards a mathematical science of computation. In: Information Processing, Proceedings of the 2nd IFIP Congress 1962, Munich, Germany, 27 August–1 September 1962, pp. 21–28. North-Holland (1962)

    Google Scholar 

  24. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for permission-based reasoning. In: Pretschner, A., Peled, D., Hutzelmann, T. (eds.) Dependable Software Systems Engineering, NATO Science for Peace and Security Series - D: Information and Communication Security, vol. 50, pp. 104–125. IOS Press (2017). https://doi.org/10.3233/978-1-61499-810-5-104

  25. Quan, L., Zongyan, Q., Liu, Z.: Formal use of design patterns and refactoring. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 323–338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-8_23

    Chapter  Google Scholar 

  26. 0 Schäfer, M., de Moor, O.: Specifying and implementing refactorings. In: Object-Oriented Programming, Systems, Languages, and Applications (2010)

    Google Scholar 

  27. Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making program refactoring safer. IEEE Softw. 27(4), 52–57 (2010)

    Article  Google Scholar 

  28. Steinhöfel, D.: Abstract Execution: Automatically Proving Infinitely Many Programs. Ph.D. thesis, TU Darmstadt, Dept. of Computer Science (2020). https://tuprints.ulb.tu-darmstadt.de/id/eprint/8540

  29. Steinhöfel, D.: REFINITY to model and prove program transformation rules. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 311–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6_16

    Chapter  Google Scholar 

  30. Steinhöfel, D., Hähnle, R.: Abstract execution. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 319–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_20

    Chapter  Google Scholar 

  31. Stolz, V., Pun, V.K.I., Gheyi, R.: Refactoring and active object languages. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 138–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_9

    Chapter  Google Scholar 

  32. Weiß, B.: Deductive verification of object-oriented software: dynamic frames, dynamic logic and predicate abstraction. Ph.D. thesis, Karlsruhe Institute of Technology (2011). https://d-nb.info/1010034960

  33. Yang, G., Filieri, A., Borges, M., Clun, D., Wen, J.: Chapter five - advances in symbolic execution. Adv. Comput. 113, 225–287 (2019). https://doi.org/10.1016/bs.adcom.2018.10.002

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Research Council of Norway via SIRIUS (237898), PeTWIN (294600) and CROFLOW (326249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Jørgen Abusdal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abusdal, O.J., Kamburjan, E., Ka I. Pun, V., Stolz, V. (2022). A Notion of Equivalence for Refactorings with Abstract Execution. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Software Engineering. ISoLA 2022. Lecture Notes in Computer Science, vol 13702. Springer, Cham. https://doi.org/10.1007/978-3-031-19756-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19756-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19755-0

  • Online ISBN: 978-3-031-19756-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics