Skip to main content

In Vitro Study of Specific Properties of Probiotic Strains for Effective and Personalized Probiotic Therapy

  • Chapter
  • First Online:
Microbiome in 3P Medicine Strategies

Abstract

Probiotics have tremendous potential to develop healthy diets, treatment and prevention. Investigation of in vitro cultural properties of health-promoting microorganisms like lactic acid bacteria (LAB) and Bifidobacteria is crucial to select probiotic strains for treatments based on gut microbiota modulation to justify individualized and personalized approach for nutrition and prevention of variety of diseases.

The studied strains of LAB and bifidobacteria did not form spores, were positively stained by Gram, grow on medium in a wide range of pH (1.0–9.0, optimum pH 5.5–6.5), were sensitive to wide range of antibiotics; and showed different resistance to gastric juice, bile and pancreatic enzymes.

The most resistant to antibiotics were L. rhamnosus LB-3 VK6 and L. delbrueckii LE VK8 strains. The most susceptible to gastric juice was L. plantarum LM VK7, which stopped its growth at 8% of gastric juice; L. acidophilus IMV B-7279, B. animalis VKL and B. animalis VKB strains were resistant even in the 100% concentration.

Strains L. acidophilus IMV В-7279, L. casei IMV В-7280, B. animalis VKL, B. animalis VKB, L. rhamnosus LB-3 VK6, L. delbrueckii LE VK8 and L. delbrueckii subsp. bulgaricus IMV В-7281 were resistant to pancreatic enzymes.

Adhesive properties of the strains according to AIM index were high in L. casei IMV В-7280, B. animalis VKL and B. animalis VKB; were moderate in L. delbrueckii subsp. bulgaricus IMV В-7281; and were low in L. acidophilus IMV В-7279, L. rhamnosus LB-3 VK6, L. delbrueckii LE VK8 and L. plantarum LM VK7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parekh PJ, Balart LA, Johnson DA (2015 Jun 18) The influence of the gut microbiome on obesity, metabolic syndrome and gastrointestinal disease. Clin Transl Gastroenterol 6:e91. https://doi.org/10.1038/ctg.2015.16

    Article  Google Scholar 

  2. WHO/FAO scientific document. http://who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed 11 Feb 2018

  3. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 8:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  Google Scholar 

  4. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ et al (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75

    Article  Google Scholar 

  5. Bubnov RV, Spivak MY, Lazarenko LM, Bomba A, Boyko NV (2015) Probiotics and immunity: provisional role for personalized diets and disease prevention. EPMA J 6:14

    Article  Google Scholar 

  6. Aron-Wisnewsky J, Clément K (2016 Mar) The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 12(3):169–181. https://doi.org/10.1038/nrneph.2015.191

    Article  CAS  Google Scholar 

  7. Lazarenko LM, Babenko LP, Bubnov RV, Demchenko OM, Zotsenko VM, Boyko NV et al (2017) Imunobiotics are the novel biotech drugs with antibacterial and immunomodulatory properties. Mikrobiol Z 79(1):66–75

    Article  Google Scholar 

  8. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Demchenko OA, Nechypurenko OV et al (2017) Comparative study of probiotic effects of Lactobacillus and bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA J 8(4):357–376. https://doi.org/10.1007/s13167-017-0117-3

    Article  Google Scholar 

  9. Jobin C (2018 Jan 5) Precision medicine using microbiota. Science 359(6371):32–34. https://doi.org/10.1126/science.aar2946

    Article  CAS  Google Scholar 

  10. Lebeer S, Bron PA, Marco ML, Van Pijkeren JP, O’Connell Motherway M, Hill C et al (2017) Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol 49:217–223. https://doi.org/10.1016/j.copbio.2017.10.007

    Article  CAS  Google Scholar 

  11. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339. https://doi.org/10.1136/gutjnl2015-309990

    Article  Google Scholar 

  12. Reid G, Abrahamsson T, Bailey M, Bindels LB, Bubnov R, Ganguli K et al (2017 Aug 24) How do probiotics and prebiotics function at distant sites? Benef Microbes 8(4):521–533. https://doi.org/10.3920/BM2016.0222

    Article  CAS  Google Scholar 

  13. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M et al (2016) Medicine in the early twenty-first century: paradigm and anticipation—EPMA position paper 2016. EPMA J 7:23

    Article  Google Scholar 

  14. Shapiro H, Suez J, Elinav E (2017) Personalized microbiome-based approaches to metabolic syndrome management and prevention. J Diabetes 9(3):226–236. https://doi.org/10.1111/1753-0407.12501.Review

    Article  Google Scholar 

  15. Dao MC, Clément K (2018) Gut microbiota and obesity: concepts relevant to clinical care. Eur J Intern Med 48:18–24. https://doi.org/10.1016/j.ejim.2017.10.005

    Article  Google Scholar 

  16. van den Nieuwboer M, Browne PD, Claassen E (2016) Patient needs and research priorities in probiotics: a quantitative KOL prioritization analysis with emphasis on infants and children. PharmaNutrition 4(1):19–28

    Article  Google Scholar 

  17. Park S, Bae JH (2015) Probiotics for weight loss: a systematic review and meta-analysis. Nutr Res 35:566–575

    Article  CAS  Google Scholar 

  18. Rondanelli M, Faliva MA, Perna S, Giacosa A, Peroni G, Castellazzi AM (2017) Using probiotics in clinical practice: where are we now? A review of existing meta-analyses. Gut Microbes 8(6):521–543. https://doi.org/10.1080/19490976.2017.1345414

    Article  Google Scholar 

  19. Papadimitriou K, Zoumpopoulou G, Foligné B et al (2015) Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 6:58. https://doi.org/10.3389/fmicb.2015.00058

    Article  Google Scholar 

  20. Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11(5):4745–4767

    Article  Google Scholar 

  21. Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K, Frachet A et al (2016) A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat Commun 7:11535. https://doi.org/10.1038/ncomms11535

    Article  CAS  Google Scholar 

  22. Nguyen TL, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8(1):1–16. https://doi.org/10.1242/dmm.017400

    Article  CAS  Google Scholar 

  23. Neville BA, Forster SC, Lawley TD (2017) Commensal Koch’s postulates: establishing causation in human microbiota research. Curr Opin Microbiol 42:47–52. https://doi.org/10.1016/j.mib.2017.10.001

    Article  Google Scholar 

  24. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  Google Scholar 

  25. D’Aimmo MR, Mattarelli P, Biavati B, Carlsson NG, Andlid T (2012) The potential of bifidobacteria as a source of natural folate. J Appl Microbiol 112(5):975–984. https://doi.org/10.1111/j.1365-2672.2012.05261.x

    Article  CAS  Google Scholar 

  26. Lilly DM, Stillwell RH (1965) Growth promoting factors produced by probiotics. Science 147:747–748

    Article  CAS  Google Scholar 

  27. Gao C, Ganesh BP, Shi Z, Shah RR, Fultz R, Major A et al (2017 Oct) Gut microbe-mediated suppression of inflammation-associated colon carcinogenesis by luminal histamine production. Am J Pathol 187(10):2323–2336. https://doi.org/10.1016/j.ajpath.2017.06.011

    Article  CAS  Google Scholar 

  28. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61(2):160–174. https://doi.org/10.1159/000342079

    Article  CAS  Google Scholar 

  29. Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A (2017) Bifidobacteria and their molecular communication with the immune system. Front Microbiol 8:2345. https://doi.org/10.3389/fmicb.2017.02345

    Article  Google Scholar 

  30. Kobayashi H, Kanmani P, Ishizuka T, Miyazaki A, Soma J, Albarracin L et al (2017) Development of an in vitro immunobiotic evaluation system against rotavirus infection in bovine intestinal epitheliocytes. Benef Microbes 8:309–321. https://doi.org/10.3920/BM2016.0155

    Article  CAS  Google Scholar 

  31. Mokrozub VV, Lazarenko LM, Sichel LM, Bubnov RV, Spivak MY (2015) The role of beneficial bacteria wall elasticity in regulating innate immune response. EPMA J 6:13

    Article  Google Scholar 

  32. Hidalgo-Cantabrana C, Sánchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P (2014) Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol 80(1):9–18. https://doi.org/10.1128/AEM.02977-13

    Article  CAS  Google Scholar 

  33. Hidalgo-Cantabrana C, Sánchez B, Álvarez-Martín P, López P, Martínez-Álvarez N, Delley M et al (2015) A single mutation in the gene responsible for the mucoid phenotype of Bifidobacterium animalis subsp. lactis confers surface and functional characteristics. Appl Environ Microbiol 81(23):7960–7968. https://doi.org/10.1128/AEM.02095-15

    Article  CAS  Google Scholar 

  34. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X et al (2012) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6:320–329

    Article  CAS  Google Scholar 

  35. European Food Safety Authority (EFSA) (2008) Technical guidance—update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. EFSA J 732:1–15. https://doi.org/10.2903/j.efsa.2008.732

    Article  Google Scholar 

  36. Ruiz L, Margolles A, Sánchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396. https://doi.org/10.3389/fmicb.2013.00396

    Article  Google Scholar 

  37. Tanaka H, Doesburg K, Iwasaki T, Mierau I (1999) Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci 82:2530–2535

    Article  CAS  Google Scholar 

  38. Penders J, Stobberingh EE, Savelkoul PHM, Wolffs PFG (2013) The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 4:87. https://doi.org/10.3389/fmicb.2013.00087

    Article  Google Scholar 

  39. D’Aimmo MR, Modesto M, Biavati B (2007) Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int J Food Microbiol 115(1):35–42

    Article  Google Scholar 

  40. Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76(1–4):115–137. Review

    Article  CAS  Google Scholar 

  41. Singer RS, Finch R, Wegener HC, Bywater R, Walters J, Lipsitch M (2003 Jan) Antibiotic resistance—the interplay between antibiotic use in animals and human beings. Lancet Infect Dis 3(1):47–51

    Article  Google Scholar 

  42. Gueimonde M, Sánchez B, de los Reyes-Gavilán CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:202. https://doi.org/10.3389/fmicb.2013.00202

    Article  Google Scholar 

  43. Zheng M, Zhang R, Tian X, Zhou X, Pan X, Wong A (2017) Assessing the risk of probiotic dietary supplements in the context of antibiotic resistance. Front Microbiol 8:908

    Article  Google Scholar 

  44. Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R (2014) Antibiotic resistance among commercially available probiotics. Food Res Int 57:176–195

    Article  CAS  Google Scholar 

  45. Tannock GW, Luchansky JB, Miller L, Connell H, Thode-Andersen S, Mercer AA et al (1994) Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100-63. Plasmid 31(1):60–71

    Article  CAS  Google Scholar 

  46. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies) (2016) General scientific guidance for stakeholders on health claim applications. EFSA J 14(1):4367 [38 pp.] https://doi.org/10.2903/j.efsa.2016.4367

  47. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Microbiol Mol Biol Rev 72(4):728–764

    Article  CAS  Google Scholar 

  48. Lebeer S, Claes I, Tytgat HL, Verhoeven TL, Marien E, von Ossowski I et al (2012) Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 78(1):185–193. https://doi.org/10.1128/AEM.06192-11

    Article  CAS  Google Scholar 

  49. von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H et al (2010) Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol 76(7):2049–2057. https://doi.org/10.1128/AEM.01958-09

    Article  CAS  Google Scholar 

  50. Tytgat HL, van Teijlingen NH, Sullan RM, Douillard FP, Rasinkangas P, Messing M et al (2016) Probiotic gut microbiota isolate interacts with dendritic cells via glycosylated heterotrimeric pili. PLoS One 11(3):e0151824. https://doi.org/10.1371/journal.pone.0151824.eCollection.2016

    Article  Google Scholar 

  51. Burgain J, Gaiani C, Francius G, Revol-Junelles AM, Cailliez-Grimal C, Lebeer S et al (2013) In vitro interactions between probiotic bacteria and milk proteins probed by atomic force microscopy. Colloids Surf B Biointerfaces 104:153–162. https://doi.org/10.1016/j.colsurfb.2012.11.032

    Article  CAS  Google Scholar 

  52. Tytgat HL, Schoofs G, Vanderleyden J, Van Damme EJ, Wattiez R, Lebeer S et al (2016) Systematic exploration of the glycoproteome of the beneficial gut isolate Lactobacillus rhamnosus GG. J Mol Microbiol Biotechnol 26(5):345–358. https://doi.org/10.1159/000447091

    Article  CAS  Google Scholar 

  53. Guerin J, Burgain J, Borges F, Bhandari B, Desobry S, Scher J et al (2017) Use of imaging techniques to identify efficient controlled release systems of Lactobacillus rhamnosus GG during in vitro digestion. Food Funct 8(4):1587–1598. https://doi.org/10.1039/c6fo01737a

    Article  CAS  Google Scholar 

  54. Garcia SL, Buck M, McMahon KD, Grossart HP, Eiler A, Auxotrophy WF (2015) Intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model community. Mol Ecol 24(17):4449–4459. https://doi.org/10.1111/mec.13319

    Article  CAS  Google Scholar 

  55. Garcia SL, Stevens SLR, Crary B, Martinez-Garcia M, Stepanauskas R, Woyke T et al (2018) Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations. ISME J 12(3):745–755. https://doi.org/10.1038/s41396-017-0001-0

    Article  CAS  Google Scholar 

  56. Compare D, Rocco A, Zamparelli MS, Nardone G (2016) The gut bacteria-driven obesity development. Dig Dis 34(3):221–229

    Article  Google Scholar 

  57. Al Kassaa I, Hober D, Hamze M, Chihib NE, Drider D (2014) Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob Proteins 6(3–4):177–185. https://doi.org/10.1007/s12602-014-9162-6

    Article  CAS  Google Scholar 

  58. Dillon SM, Frank DN, Wilson CC (2016) The gut microbiome and HIV1 pathogenesis: a two-way street. AIDS 30(18):2737–2751

    Article  CAS  Google Scholar 

  59. Babenko LP, Lazarenko LM, Shynkarenko LM, Mokrozub VV, Pidgorskyi VS, Spivak MY (2012 Nov–Dec) The effect of lacto- and bifidobacteria compositions on the vaginal microflora in cases of intravaginal staphylococcosis. Mikrobiol Z 74(6):80–89

    CAS  Google Scholar 

  60. Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G et al (2017) Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe 22(6):809–816.e4. https://doi.org/10.1016/j.chom.2017.10.013

    Article  CAS  Google Scholar 

  61. Ilavenil S, Park HS, Vijayakumar M, Arasu MV, Kim DH, Ravikumar S et al (2015) Probiotic potential of Lactobacillus strains with antifungal activity isolated from animal manure. Sci World J 2015:802570–802510. https://doi.org/10.1155/2015/802570

    Article  Google Scholar 

  62. Hager CL, Ghannoum MA (2017) The mycobiome: role in health and disease, and as a potential probiotic target in gastrointestinal disease. Dig Liver Dis 49(11):1171–1176. https://doi.org/10.1016/j.dld.2017.08.025

    Article  CAS  Google Scholar 

  63. Talwalkar A, Kailasapathy K (2003) Metabolic and biochemical responses of probiotic bacteria to oxygen. J Dairy Sci 86(8):2537–2546

    Article  CAS  Google Scholar 

  64. Talwalkar A, Kailasapathy K (2004 Mar) The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr Issues Intest Microbiol 5(1):1–8

    CAS  Google Scholar 

  65. Wang Y, Kirpich I, Liu Y, Ma Z, Barve S, McClain CJ et al (2011) Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. Am J Pathol 179(6):2866–2875. https://doi.org/10.1016/j.ajpath.2011.08.039

    Article  CAS  Google Scholar 

  66. Bubnov R, Polivka J Jr, Zubor P, Koniczka K, Golubnitschaja O (2017) Premetastatic niches in breast cancer: are they created by or prior to the tumour onset? “Flammer syndrome” relevance to address the question. EPMA J 8:141–157. https://doi.org/10.1007/s13167-017-0092-8

    Article  Google Scholar 

  67. Bubnov RV (2011) Ultrasonography diagnostic capability for mesenteric vascular disorders. Gut 60(Suppl 3):A104

    Google Scholar 

  68. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L et al (2014) The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 124(7):1174–1182

    Article  CAS  Google Scholar 

  69. Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R et al (2015) Position paper in cancer: current overview and future perspectives. EPMA J 6(1):9. https://doi.org/10.1186/s13167-015-0030-6

    Article  Google Scholar 

  70. York A (2018) Microbiome: gut microbiota sways response to cancer immunotherapy. Nat Rev Microbiol 16(3):121. https://doi.org/10.1038/nrmicro.2018.12

    Article  CAS  Google Scholar 

  71. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY (2018) Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 9(2):205–223. https://doi.org/10.1007/s13167-018-0132-z

    Article  Google Scholar 

  72. Bubnov R, Babenko L, Lazarenko L, Kryvtsova M, Shcherbakov O, Zholobak N, Golubnitschaja O, Spivak M (2019) Can tailored nanoceria act as a prebiotic? Report on improved lipid profile and gut microbiota in obese mice. EPMA J 10(4):317–335. https://doi.org/10.1007/s13167-019-00190-1

    Article  Google Scholar 

  73. Golubnitschaja O (ed) (2019) Flammer syndrome – from phenotype to associated pathologies, prediction, prevention and personalisation, vol 11. isbn 978-3-030-13549-2 isbn 978-3-030-13550-8 (eBook). https://doi.org/10.1007/978-3-030-13550-8

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bubnov, R.V., Babenko, L.P., Lazarenko, L.M., Mokrozub, V.V., Spivak, M. (2023). In Vitro Study of Specific Properties of Probiotic Strains for Effective and Personalized Probiotic Therapy. In: Boyko, N., Golubnitschaja, O. (eds) Microbiome in 3P Medicine Strategies. Advances in Predictive, Preventive and Personalised Medicine, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-031-19564-8_13

Download citation

Publish with us

Policies and ethics