Skip to main content

Role of Drone Technology in Sustainable Rural Development: Opportunities and Challenges

  • Conference paper
  • First Online:
Proceedings of UASG 2021: Wings 4 Sustainability (UASG 2021)

Abstract

Climate change and local weather conditions have caused several issues in the farming sector. The rapidly expanding global population is an issue that must be addressed to secure food and water supplies through the use of information technology in precision agriculture and smart farming. These technical advances in precision agriculture are represented by unmanned aerial vehicles (UAVs). UAVs or DRONEs help in agriculture by counting the number of plants, visual inspection of the crop field, water management, erosion analysis, plant counting, soil moisture analysis, crop health assessment, irrigation scheduling, analyzing plant physiology, and yield forecasting. Drones can be used to facilitate development by reporting and collecting data in rural development in terms of agriculture land boundaries, water resources and their surface area, village boundaries, monitoring forest area, observation of hilly and tall plant regions, and soil condition in terms of water content, moisture, electrical conductivity, pH, and temperature. Repetitive collection of image and video data helps to analyze changes in rural development. Rural development aims to improve rural communities’ physical infrastructure and basic services. Delay in detecting problems associated with rural development may further deteriorate soil and water resources making them more vulnerable. This paper focuses on various opportunities and challenges in sustainable rural development and the application of UAVs in almost every aspect of human life, allowing people to make significant advances in human life support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frankelius P, Norman C, Johansen K (2019) Agricultural innovation and the role of institutions: lessons from the game of drones. J Agric Environ Ethics 32(5):681–707

    Article  Google Scholar 

  2. Kopačková-Strnadová V, Koucká L, Jelének J, Lhotáková Z, Oulehle F (2021) Canopy top, height and photosynthetic pigment estimation using Parrot Sequoia multispectral imagery and the Unmanned Aerial Vehicle (UAV). Remote Sens 13(4):705

    Article  Google Scholar 

  3. Klein Hentz Ă‚M, Corte APD, PĂ©llico Netto S, Strager MP, Schoeninger ER (2018) Tree detection: automatic tree detection using UAV-based data. Floresta 48:393

    Google Scholar 

  4. Lin Y, Jiang M, Yao Y, Zhang L, Lin J (2015) Use of UAV Oblique imaging for the detection of individual trees in residential environments. Urban Forest Urban Greening 14:404–412

    Article  Google Scholar 

  5. Flores CC, Tan E, Crompvoets J (2021) Governance assessment of UAV implementation in Kenyan land administration system. Technol Soc 66:101664

    Article  Google Scholar 

  6. Ramadhani SA, Bennett RM, Nex FC (2018) Exploring UAV in Indonesian cadastral boundary data acquisition. Earth Sci Inf 11(1):129–146

    Article  Google Scholar 

  7. Hunt ER, Horneck DA, Spinelli CB, Turner RW, Bruce AE, Gadler DJ, Brungardt JJ, Hamm PB (2018) Monitoring nitrogen status of potatoes using small unmanned aerial vehicles. Precis Agric 19(2):314–333

    Article  Google Scholar 

  8. Finn RL, Wright D (2012) Unmanned aircraft systems: surveillance, ethics and privacy in civil applications. Comput Law Secur Rev 28(2):184–194

    Article  Google Scholar 

  9. Amaral LRD, Zerbato C, Freitas RGD, Barbosa Júnior MR, Simões IOPDS (2021) UAV applications in Agriculture 4.0. Revista Ciência Agronômica 51

    Google Scholar 

  10. Krupnick GA (2013) Conservation of tropical plant biodiversity: what have we done, where are we going? Biotropica 45(6):693–708

    Article  Google Scholar 

  11. Schiffman R (2014) Drones flying high as a new tool for field biologists. Science 344:459

    Article  Google Scholar 

  12. Silverberg, L.M. Vanvuuren, M. Vanvuuren, R. and Lutz, G. On the effectiveness of UAS for anti-poaching in the African arid savanna. BioRxiv, 660126 (2019).

    Google Scholar 

  13. Gonzalez LF, Montes GA, Puig E, Johnson S, Mengersen K, Gaston KJ (2019) Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 16(1):97

    Article  Google Scholar 

  14. Van Gemert JC, Verschoor CR, Mettes P, Epema K, Koh LP, Wich SA (2015) Nature conservation drones for automatic localization and counting of animals. In: Agapito L, Bronstein MM, Rother C (eds) Computer vision—ECCV 2014 workshops, Part I. Springer, Cham, Switzerland, pp 255–270

    Google Scholar 

  15. Christiansen P, Steen KA, Jørgensen RN, Karstoft H (2014) Automated detection and recognition of wildlife using thermal cameras. Sensors 14:13778–13793

    Article  Google Scholar 

  16. Vincent JB, Werden LK, Ditmer MA (2015) Barriers to adding UAVs to the ecologist’s toolbox. Front Ecol Environ 13:74–75

    Article  Google Scholar 

  17. Cork L, Clothier R, Gonzalez LF, Walker R (2007) The future of UAS: standards, regulations, and operational experiences [workshop report]. IEEE Aerosp Electron Syst Manag 22:29–44

    Google Scholar 

  18. https://www.business-standard.com/article/news-ians/nearly-70-percent-of-indian-farms-are-very-small-census-shows-115120901080_1.html. Last accessed 2021/08/30

  19. www.iwmi.cgiar.org/2018/06/irrigated-area-mapping-asia-and-africa/. Last accessed 2021/07/21

  20. Mogili UR, Deepak B (2018) Review on the application of drone systems in precision agriculture. Proc Comp Sci 133:502–509

    Article  Google Scholar 

  21. Paustain M, Theuvsen L (2017) Adoption of precision agriculture technologies by German crop farmers. Precision Agric 18:701–716

    Google Scholar 

  22. European Commission: Drones in Agriculture. Brussels, Belgium. https://ec.europa.eu/growth/tools-atabases/dem/monitor/sites/default/files/Drones_vf.pdf (2018). Last Accessed 2021/09/02

  23. Nhamo L, Magidi J, Nyamugama A, Clulow AD, Sibanda M, Chimonyo VG, Mabhaudhi T (2020) Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture 10(7):256

    Article  Google Scholar 

  24. Zheng S, Wang Z, Wachenheim CJ (2019) Technology adoption among farmers in Jilin Province, China: the case of aerial pesticide application. China Agric Econ Rev 11:206–216

    Google Scholar 

  25. Pijl A, Bailly JS, Feurer DE, Maaoui MA, Boussema MR, Tarolli P (2020) TERRA: Terrain extraction from elevation rasters through repetitive anisotropic filtering. Int J Appl Earth Obs Geoinf 84:101977

    Google Scholar 

  26. Radjawali I, Pye O (2017) Drones for justice: inclusive technology and river-related action research along the Kapuas. Geogr Helv 72(1):17–27

    Article  Google Scholar 

  27. García-Martínez H, Flores-Magdaleno H, Ascencio-Hernández R, Khalil-Gardezi A, Tijerina-Chávez L, Mancilla-Villa OR, Vázquez-Peña MA (2020) Corn grain yield estimation from vegetation indices, canopy cover, plant density, and a neural network using multispectral and RGB images acquired with unmanned aerial vehicles. Agriculture 10(7):277

    Article  Google Scholar 

  28. Khan Z, Rahimi-Eichi V, Haefele S, Garnett T, Miklavcic SJ (2018) Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging. Plant Methods 14(1):20

    Article  Google Scholar 

  29. Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sens 1–17

    Google Scholar 

  30. Boursianis AD, Papadopoulou MS, Diamantoulakis P, Liopa-Tsakalidi A, Barouchas P, Salahas G, Karagiannidis G, Wan S, Goudos SK (2020) Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: a comprehensive review. Internet Things 100187

    Google Scholar 

  31. Modica G, Messina G, De Luca G, Fiozzo V, Praticò S (2020) Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Comput Electron Agric 175:105500

    Google Scholar 

  32. Veroustraete F (2015) The rise of the drones in agriculture. Agriculture Editorial, Ecronicon September 16

    Google Scholar 

  33. Barrero O, Perdomo SA (2018) RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields. Precision Agric 19(5):809–822

    Article  Google Scholar 

  34. Su J, Liu C, Hu X, Xu X, Guo L, Chen WH (2019) Spatio-temporal monitoring of wheat yellow rust using UAV multispectral imagery. Comput Electron Agric 167:105035

    Article  Google Scholar 

  35. Xiao D, Feng J, Lin T, Pang C, Ye Y (2018) Classification and recognition scheme for vegetable pests based on the BOF-SVM model. Int J Agric Biol Eng 11(3):190–196

    Google Scholar 

  36. Ren Q, Zhang R, Cai W, Sun X, Cao L (2020) Application and development of new drones in agriculture. In: IOP conference series: earth and environmental science, vol 440, no 5. IOP Publishing, p 052041

    Google Scholar 

  37. Dara SK (2019) The new integrated pest management paradigm for the modern age. J Integr Pest Manag 10(1):12

    Article  Google Scholar 

  38. Huang H, Deng J, Lan Y, Yang A, Zhang L, Wen S, Zhang H, Zhang Y, Deng Y (2019) Detection of helminthosporium leaf blotch disease based on UAV imagery. Appl Sci 9(3):558

    Article  Google Scholar 

  39. Iost Filho FH, Heldens WB, Kong Z, de Lange ES (2020) Drones: innovative technology for use in precision pest management. J Econ Entomol 113(1):1–25

    Google Scholar 

  40. Gayathri Devi K, Sowmiya N, Yasoda RK, Muthulakshmi DK, Kishore B (2020) Review on the application of drones for crop health monitoring and spraying pesticides and fertilizer. J Crit Rev 7(6):667–672

    Google Scholar 

  41. Faial BS, Pessin G, Filho GPR, Carvalho ACPLF, Furquim G, Ueyama J (2014) Fine-tuning of UAV control rules for spraying pesticides on crop fields. In: 2014 IEEE 26th international conference on tools with artificial intelligence, pp 527–533

    Google Scholar 

  42. Faiçal BS, Freitas H, Gomes PH, Mano LY, de Pessin G, Carvalho AC, Krishnamachari B, Ueyama J (2017) An adaptive approach for UAV-based pesticide spraying in dynamic environments. Comput Electron Agric 138:210–223

    Article  Google Scholar 

  43. Franchi A, Giordano PR, Secchi C, Son HI, Bülthoff HH (2011) A passivity-based decentralized approach for the bilateral teleoperation of a group of UAVs with switching topology. In: 2011 IEEE international conference on robotics and automation, pp 898–905

    Google Scholar 

  44. Li X, Zhao Y, Zhang J, Dong Y (2016) A hybrid PSO algorithm based flight path optimization for multiple agricultural UAVs. In: 2016 IEEE 28th international conference on tools with artificial intelligence (ICTAI). IEEE, pp 691–697

    Google Scholar 

  45. Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics 8(1):17–29

    Article  Google Scholar 

  46. Islam N, Rashid MM, Pasandideh F, Ray B, Moore S, Kadel R (2021) A review of applications and communication technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) based sustainable smart farming. Sustainability 13(4):1821

    Google Scholar 

  47. Radoglou-Grammatikis P, Sarigiannidis P, Lagkas T, Moscholios I (2020) A compilation of UAV applications for precision agriculture. Comput Netw 172:p107-148

    Article  Google Scholar 

  48. Jorge J, Vallbé M, Soler JA (2019) Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images. Eur J Remote Sens 52(1):169–177

    Article  Google Scholar 

  49. Quemada M, Gabriel J, Zarco-Tejada P (2014) Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization. Remote Sens 6:2940–2962

    Google Scholar 

  50. Peña JM, Torres-Sánchez J, Serrano-Pérez A, de Castro AI, LópezGranados F (2015) Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors 15:5609–5626

    Google Scholar 

  51. King BA, Tarkalson DD, Sharma V, Bjorneberg DL (2021) Thermal crop water stress index baseline temperatures for sugarbeet in arid western US. Agric Water Manag 243:106459

    Article  Google Scholar 

  52. Zarco-Tejada PJ, González-Dugo V, Berni JA (2012) Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens Environ 117:322–337

    Article  Google Scholar 

  53. Gago J, Douthe C, Coopman R, Gallego P, Ribas-Carbo M, Flexas J, Escalona J, Medrano H (2015) UAVs challenge to assess water stress for sustainable agriculture. Agric Water Manag 153:9–19

    Article  Google Scholar 

  54. Girona J (2002) Regulated deficit irrigation in peach. A global analysis. Acta Hortic 592:335–342

    Article  Google Scholar 

  55. Fereres E, Soriano M (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58:147–159

    Article  Google Scholar 

  56. Popescu D, Stoican F, Stamatescu G, Ichim L, Dragana C (2020) Advanced UAV–WSN system for intelligent monitoring in precision agriculture. Sensors 20:817

    Article  Google Scholar 

  57. Guo Y, Wang H, Wu Z, Wang S, Sun H, Senthilnath J, Wang J, Robin Bryant C, Fu Y (2020) Modified red blue vegetation index for chlorophyll estimation and yield prediction of maize from visible images captured by UAV. Sensors 20:5055

    Google Scholar 

  58. Pathak H, Kumar GAK, Mohapatra SD, Gaikwad BB, Rane J (2020) Use of drones in agriculture: potentials, problems and policy needs. ICAR-NIASM 300:13+iv

    Google Scholar 

  59. Yunus AM, Azmi FAM (2020) Drone technology as a modern tool in monitoring the rural-urban development. In: IOP conference series: earth and environmental science, vol 540. IOP Publishing, pp 012076

    Google Scholar 

  60. Memon ZA, Majid MZA, Mustaffar M (2006) A systematic approach for monitoring and evaluating the construction project progress. J Inst Eng 67(3):26–32

    Google Scholar 

  61. Paneque-Gálvez J, Vargas-Ramírez N, Napoletano BM, Cummings A (2017) Grassroots innovation using drones for indigenous mapping and monitoring. Land 6(4):86

    Article  Google Scholar 

  62. Koeva M, Muneza M, Gevaert C, Gerke M, Nex F (2018) Using UAVs for map creation and updating. A case study in Rwanda. Surv Rev 50(361):312–325

    Google Scholar 

  63. Reyes-García V, Ledezma JC, Paneque-Gálvez J, Orta M, Gueze M, Lobo A, Guinart D, Luz AC (2012) Presence and purpose of nonindigenous peoples on indigenous lands: a descriptive account from the Bolivian lowlands. Soc Nat Resour 25:270–284

    Article  Google Scholar 

  64. Montefrio MJF, Sonnenfeld DA (2013) Global–local tensions in contract farming of biofuel crops involving indigenous communities in the Philippines. Soc Nat Resour 26:239–253

    Article  Google Scholar 

  65. Cummings AR, Cummings GR, Hamer E, Moses P, Norman Z, Captain V, Bento R, Butler K (2017) Developing a UAV-based monitoring program with indigenous peoples. J Unmanned Veh Syst 5:115–125

    Google Scholar 

  66. Adade R, Aibinu AM, Ekumah B, Asaana J (2021) Unmanned Aerial Vehicle (UAV) applications in coastal zone management—a review. Environ Monit Assess 193(3):1–12

    Article  Google Scholar 

  67. Casella E, Rovere A, Pedroncini A, Stark CP, Casella M, Ferrari M, Firpo M (2016) Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Mar Lett 36(2):151–163

    Article  Google Scholar 

  68. Kopaska J (2014) Drones—a fisheries assessment tool. Fisheries 39:319–319

    Article  Google Scholar 

  69. Tyler S, Jensen OP, Hogan Z, Chandra S, Galland LM, Simmons J (2018) Perspectives on the application of unmanned aircraft for freshwater fisheries census. Fisheries 43:510–516

    Google Scholar 

  70. Casado MR, Gonzalez RB, Kriechbaumer T, Veal A (2015) Automated identification of river hydromorphological features using UAV high-resolution aerial imagery. Sensors 15(11):27969–27989

    Article  Google Scholar 

  71. https://dairynow.ca/two-farmers-using-drones-to-simplify-work/. Last accessed on 2021/06/16

  72. Al-Thani N, Albuainain A, Alnaimi F, Zorba N (2020) Drones for sheep livestock monitoring. In: IEEE 20th mediterranean electrotechnical conference (MELECON), pp 672–676

    Google Scholar 

  73. Karl Y, Kim HK, Lee JH (2020) A smart security drones for farms using software architecture. Int J Softw Innov (IJSI) 8(4):40–49

    Article  Google Scholar 

  74. Xu B, Wang W, Falzon G, Kwan P, Guo L, Sun Z, Li C (2020) Livestock classification and counting in quadcopter aerial images using Mask R-CNN. Int J Remote Sens 41(21):8121–8142

    Article  Google Scholar 

  75. O’Grady MJ, Hare GMPO (2017) Modelling the smart farm. Inf Process Agric 4:179–187

    Google Scholar 

  76. Pádua L, Vanko J, Hruška J, Adão T, Sousa JJ, Peres E, Morais R (2017) UAS, sensors, and data processing in agroforestry: a review towards practical applications. Int J Remote Sens 38(8–10):2349–2391

    Google Scholar 

  77. de Jesús Marcial-Pablo M, Gonzalez-Sanchez A, Jimenez-Jimenez SI, Ontiveros-Capurata RE, Ojeda-Bustamante W (2019) Estimation of vegetation fraction using RGB and multispectral images from UAV. Int J Remote Sens 40(2):420–438

    Google Scholar 

  78. Pi W, Du J, Bi Y, Gao X, Zhu X (2021) 3D-CNN based UAV hyperspectral imagery for grassland degradation indicator ground object classification research. Eco Inform 62:101278

    Article  Google Scholar 

  79. Tobór D, Barcik J, Czech P (2017) Legal aspects of air transport safety and the use of drones. Zeszyty Naukowe. Transport/Politechnika Śląska 97:167–179

    Google Scholar 

  80. Luppicini R, So A (2016) A technological review of commercial drone use in the context of governance, ethics, and privacy. Technol Soc 46:109–119

    Article  Google Scholar 

  81. Stöcker C, Bennett R, Nex F, Gerke M, Zevenbergen J (2017) Review of the current state of UAV regulations. Remote Sens 9:459

    Article  Google Scholar 

  82. Marinello F, Pezzuolo A, Chiumenti A, Sartori L (2016) Technical analysis of unmanned aerial vehicles (drones) for agricultural applications. Eng Rural Dev 15:870

    Google Scholar 

  83. Mazur M, Wisniewski A, McMillan J (2016) Clarity from above: PwC global report on the commercial applications of drone technology. Drone Powered Solutions, PriceWater house Coopers, Warsaw

    Google Scholar 

  84. Sylvester G (ed) (2018) E-agriculture in action: drones for agriculture. Food and Agriculture Organization of the United Nations and International Telecommunication Union

    Google Scholar 

  85. Harris JM, Nelson JA, Rieucau G, Broussard WP III (2019) Use of drones in fishery science. Trans Am Fish Soc 148(4):687–697

    Article  Google Scholar 

  86. Michels M, Fecke W, Feil J-H, Mubhoff O, Pigisch J, Krone S (2020) Smartphone adoption and use in agriculture: empirical evidence from Germany. Precision Agric 21:403–425

    Google Scholar 

  87. Sinha JP, Kushwaha HL, Kushwaha D, Singh N, Purushottam M (2016) Prospect of Unmanned Aerial Vehicle (UAV) technology for agricultural production management. In: International conference on emerging technologies in agricultural and food engineering agricultural and food engineering department, IIT Kharagpur, pp 53–66

    Google Scholar 

  88. Hong A, Lee DG, Bülthoff HH, Son HI (2017) Multimodal feedback for teleoperation of multiple mobile robots in an outdoor environment. J Multimodal User Interfaces 11(1):67–80

    Article  Google Scholar 

  89. Singhal G, Bansod B, Mathew L, Goswami J, Choudhury BU, Raju PLN (2019) Chlorophyll estimation using a multi-spectral unmanned aerial system based on machine learning techniques. Remote Sens Appl Soc Environ 15:100235

    Google Scholar 

  90. https://www.equinoxsdrones.com/blog/importance-of-drone-technology-in-indian-agriculture-farming. Last accessed on 2021/07/16

  91. Sofonia JJ, Phinn S, Roelfsema C, Kendoul F, Rist Y (2019) Modelling the effects of fundamental UAV flight parameters on LiDAR point clouds to facilitate objectives-based planning. ISPRS J Photogram Remote Sens 149:105–118

    Article  Google Scholar 

  92. Jiyu L, Lan Y, Jianwei W, Shengde C, Cong H, Qi L, Qiuping L (2017) Distribution law of rice pollen in the wind field of small UAV. Int J Agric Biol Eng 10(4):32–40

    Google Scholar 

  93. Chechetka SA, Yu Y, Tange M, Miyako E (2017) Materially engineered artificial pollinators. Chem 2(2):224–239

    Google Scholar 

  94. Hovhannisyan T, Efendyan P, Vardanyan M (2018) Creation of a digital model of fields with the application of DJI phantom 3 drone and the opportunities of its utilization in agriculture. Ann Agrarian Sci 16(2):177–180

    Article  Google Scholar 

  95. Chebrolu N, Läbe T, Stachniss C (2018) Robust long-term registration of UAV images of crop fields for precision agriculture. IEEE Robot Autom Lett 3:3097–3104

    Article  Google Scholar 

  96. Guillén-Climent ML, Zarco-Tejada PJ, Berni JA, North PR, Villalobos FJ (2012) Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV. Precision Agric 13(4):473–500

    Article  Google Scholar 

  97. Torres-Sánchez J, de Pena JM, Castro AI, López-Granados F (2014) Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput Electron Agric 103:104–113

    Article  Google Scholar 

  98. Ju C, Son HI (2018) Multiple UAV systems for agricultural applications: control, implementation, and evaluation. Electronics 7(9):162

    Article  Google Scholar 

  99. Sundar K, Rathinam S (2017) Algorithms for heterogeneous, multiple depot, multiple unmanned vehicle path planning problems. J Intell Rob Syst 88(2):513–526

    Article  Google Scholar 

  100. Mersheeva V, Friedrich G (2012) Routing for continuous monitoring by multiple micro AVs in disaster scenarios. In: ECAI. IOS Press, pp 588–593

    Google Scholar 

  101. Manfreda S, McCabe MF, Miller PE, Lucas R, Pajuelo Madrigal V, Mallinis G, Ben Dor E, Helman D, Estes L, Ciraolo G, Müllerová J (2018) On the use of unmanned aerial systems for environmental monitoring. Remote Sens 10(4):641

    Google Scholar 

  102. Geipel J, Link J, Claupein W (2014) Combined spectral and spatial modelling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens 6(11):10335–10355

    Article  Google Scholar 

  103. Uto K, Seki H, Saito G, Kosugi Y (2013) Development of UAV-mounted miniature hyperspectral sensor system for agricultural monitoring. In: 2013 IEEE international geoscience and remote sensing symposium-IGARSS 2013, pp 4415–441

    Google Scholar 

  104. Zheng H, Zhou X, Cheng T, Yao X, Tian Y, Cao W, Zhu Y (2016) Evaluation of a UAV-based hyperspectral frame camera for monitoring the leaf nitrogen concentration in rice. In: 2016 IEEE international geoscience and remote sensing symposium (IGARSS), pp 7350–7353

    Google Scholar 

  105. Shao W, Kawakami R, Yoshihashi R, You S, Kawase H, Naemura T (2020) Cattle detection and counting in UAV images based on convolutional neural networks. Int J Remote Sens 41(1):31–52

    Article  Google Scholar 

  106. Maluleke W (2020) The use of drones in policing stock theft by the selected rural South African livestock farmers. J Soc Sci 48(4):1–20

    Google Scholar 

  107. Michels M, Fecke W, Feil JH, Musshoff O, Pigisch J, Krone S (2020) Smartphone adoption and use in agriculture: empirical evidence from Germany. Precision Agric 21(2):403–425

    Article  Google Scholar 

  108. Land Portal, Land and the Sustainable Development Goals (SDGs) (2021). https://landportal.org/node/52263

  109. Expert group on land administration and management, framework for effective land administration a reference for developing, reforming, renewing, strengthening or modernizing land administration and management systems (2019). https://ggim.un.org/documents/FELA_Consultation_Draft.pdf

  110. Raja L, Vyas S (2019) The study of technological development in the field of smart farming. In: Smart farming technologies for sustainable agricultural development. IGI Global, Hershey, PA, USA, pp 1–24. https://www.igi-global.com/chapter/the-study-of-technological-development-in-the-field-of-smart-farming/209543

  111. Ohdaira Y, Sasaki R, Takeda H (2013) Analysis of factors affecting seed protein compositions and protein contents in rice of seed-protein mutant cultivars under different cropping seasons. Jpn J Crop Sci 82:18–27

    Article  Google Scholar 

  112. Sakaiya E, Inoue Y (2012) Investigating error sources in remote sensing of protein content of brown rice towards operational applications on a regional scale. Jpn J Crop Sci 81:317–331

    Article  Google Scholar 

  113. Hama A, Tanaka K, Mochizuki A, Tsuruoka Y, Kondoh A (2020) Estimating the protein concentration in rice grain using UAV imagery together with agroclimatic data. Agronomy 10(3):431

    Google Scholar 

  114. Rupnik R, Kukar M, Vračar P, Košir D, Pevec D, Bosnić Z (2018) AgroDSS: A decision support system for agriculture and farming. Comput Electron Agric 1–12. https://doi.org/10.1016/j.compag.2018.04.001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Ravibabu Mandla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mandla, V.R., Chokkavarapu, N., Peddinti, V.S.S. (2023). Role of Drone Technology in Sustainable Rural Development: Opportunities and Challenges. In: Jain, K., Mishra, V., Pradhan, B. (eds) Proceedings of UASG 2021: Wings 4 Sustainability. UASG 2021. Lecture Notes in Civil Engineering, vol 304. Springer, Cham. https://doi.org/10.1007/978-3-031-19309-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19309-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19308-8

  • Online ISBN: 978-3-031-19309-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics