Skip to main content

Weakly Supervised Video Anomaly Detection with Temporal and Abnormal Information

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13536))

Included in the following conference series:

  • 1777 Accesses

Abstract

Weakly supervised video anomaly detection is to distinguish anomalies from normal scenes and events in videos, under the setting that we only know whether there are abnormal events in a video, but the specific occurrence time of abnormal events is unknown. It is generally modeled as a MIL (multiple instance learning) problem, where video-level labels are provided to train an anomaly detector to obtain frame-level labels for videos. However, most existing methods generally overlook temporal information in abnormal videos (positive bags), and only use one sample (snippet) in the positive bag to train. The positive bag may include more useful information with high possibility. Therefore, we propose the Weakly Supervised Video Anomaly Detection Approach with Temporal and Positive Features, which consider both the temporal information and more positive samples for video anomaly detection. Its contributions can be summarized as follows: (1) we consider more temporal information and introduced the attention mechanism in our network, we use both local and global snippets’ features to enhance the temporal representation ability of these features. (2) We use more positive (abnormal) samples and its features in bags to train our model, so that more complementary and relevant information will make our model more robust and effective. (3) We consider not only the differences between normal samples and abnormal samples but also between abnormal samples and abnormal samples, which can help our proposed approach to excavate positive (abnormal) samples’ information more efficiently and adequately. Experimental results demonstrate the effectiveness of our proposed methods in the UCF-Crime and ShanghaiTech dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6479–6488 (2018)

    Google Scholar 

  2. Unusual crowd activity dataset of University of Minnesota. http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi

  3. Li, W., Mahadevan, V., Vasconcelos, N.: Anomaly detection and localization in crowded scenes (PAMI). IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 18–32 (2013)

    Google Scholar 

  4. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 FPS in MATLAB. In: IEEE International Conference on Computer Vision (ICCV), pp. 2720–2727 (2013)

    Google Scholar 

  5. Liu, W., Lian, D., Luo, W., Gao, S.: Future frame prediction for anomaly detection - a new baseline. In: IEEE International Conference on Computer Vision (ICCV) (2018)

    Google Scholar 

  6. He, C., Shao, J., Sun, J.: An anomaly-introduced learning method for abnormal event detection. Multimedia Tools Appl. 77(22), 29573–29588 (2017). https://doi.org/10.1007/s11042-017-5255-z

    Article  Google Scholar 

  7. Zhong, J., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1237–1246 (2019)

    Google Scholar 

  8. Wu, P., et al.: Not only look, but also listen: learning multimodal violence detection under weak supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 322–339. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_20

    Chapter  Google Scholar 

  9. Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J.W., Carneiro, G.: Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In: IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  10. Wan, B., Fang, Y., Xia, X., Mei, J.: Weakly supervised video anomaly detection via center-guided discriminative learning. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2020)

    Google Scholar 

  11. Feng, J.-C., Hong, F.-T., Zheng, W.-S.: MIST: multiple instance self-training framework for video anomaly detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14009–14018 (2021)

    Google Scholar 

  12. Del Giorno, A., Bagnell, J.A., Hebert, M.: A discriminative framework for anomaly detection in large videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 334–349. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_21

    Chapter  Google Scholar 

  13. Ionescu, R., Smeureanu, S., Alexe, B., Popescu, M.: Unmasking the abnormal events in video. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  14. Wang, S., Zeng, Y., Liu, Q., Zhu, C., Zhu, E., Yin, J.: Detecting abnormality without knowing normality: a two-stage approach for unsupervised video abnormal event detection. In: ACM International Conference on Multimedia (ACM MM) (2018)

    Google Scholar 

  15. Liu, W., Lian, D., Luo, W., Gao, S.: Future frame prediction for anomaly detection - a new baseline. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  16. Ye, M., Peng, X., Gan, W., Wu, W., Qiao, Y.: AnoPCN: video anomaly detection via deep predictive coding network. In: ACM International Conference on Multimedia (ACM MM), pp. 1805–1813 (2019)

    Google Scholar 

  17. Zhong, J., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1237–1246 (2019)

    Google Scholar 

  18. Bromley, J., Guyon, I., Lecun, Y., Sckinger, E., Shah, R.: Signature verification using a “Siamese” time delay neural network. In: Neural Information Processing Systems (NeurIPS) (1994)

    Google Scholar 

  19. Hong, F., Huang, X., Li, W., Zheng, W.: Mini-Net: multiple instance ranking network for video highlight detection. arXiv preprint arXiv:2007.09833 (2020)

  20. Nguyen, P., Liu, T., Prasad, G., Han, B.: Weakly supervised action localization by sparse temporal pooling network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  21. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  22. Sohn, K.: Improved deep metric learning with multiclass n-pair loss objective. In: Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  23. Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  24. Liu, W., Luo, W., Li, Z., Zhao, P., Gao, S., et al.: Margin learning embedded prediction for video anomaly detection with a few anomalies. In: International Joint Conference on Artificial Intelligence (IJCAI) (2019)

    Google Scholar 

  25. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6299–6308 (2017)

    Google Scholar 

  26. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  27. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  28. Cao, Y., Xu, J., Lin, S., et al.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE (2020)

    Google Scholar 

  29. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 733–742 (2016)

    Google Scholar 

  30. Wang, J., Cherian, A.: GODS: generalized one-class discriminative subspaces for anomaly detection. In: IEEE International Conference on Computer Vision (CVPR), pp. 8201–8211 (2019)

    Google Scholar 

  31. Wan, B., Fang, Y., Xia, X., Mei, J.: Weakly supervised video anomaly detection via center-guided discriminative learning. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2020)

    Google Scholar 

  32. Georgescu, M.-I., Barbalau, A., Ionescu, R.T., Khan, F.S., Popescu, M., Shah, M.: Anomaly detection in video via self-supervised and multi-task learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12742–12752 (2021)

    Google Scholar 

  33. Wang, Z., Zou, Y., Zhang, Z.: Cluster attention contrast for video anomaly detection. In: ACM International Conference on Multimedia (ACM MM), pp. 2463–2471 (2020)

    Google Scholar 

  34. Cai, R., Zhang, H., Liu, W., Gao, S., Hao, Z.: Appearance-motion memory consistency network for video anomaly detection. In: Association for the Advancement of Artificial Intelligence (AAAI), pp. 938–946 (2021)

    Google Scholar 

  35. Zaheer, M.Z., Mahmood, A., Astrid, M., Lee, S.-I.: CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 358–376. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_22

    Chapter  Google Scholar 

  36. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: IEEE international conference on Computer Vision (ICCV), pp. 4489–4497 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (61925201, 62132001, U21B2025) and the National Key R &D Program of China (2021YFF0901502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pi, R., He, X., Peng, Y. (2022). Weakly Supervised Video Anomaly Detection with Temporal and Abnormal Information. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics