Skip to main content

Learning to Adapt to Unseen Abnormal Activities Under Weak Supervision

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12626))

Included in the following conference series:

Abstract

We present a meta-learning framework for weakly supervised anomaly detection in videos, where the detector learns to adapt to unseen types of abnormal activities effectively when only video-level annotations of binary labels are available. Our work is motivated by the fact that existing methods suffer from poor generalization to diverse unseen examples. We claim that an anomaly detector equipped with a meta-learning scheme alleviates the limitation by leading the model to an initialization point for better optimization. We evaluate the performance of our framework on two challenging datasets, UCF-Crime and ShanghaiTech. The experimental results demonstrate that our algorithm boosts the capability to localize unseen abnormal events in a weakly supervised setting. Besides the technical contributions, we perform the annotation of missing labels in the UCF-Crime dataset and make our task evaluated effectively.

J. Park and J. Kim—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://cv.snu.ac.kr/research/Learning-to-Adapt-to-Unseen-Abnormal-Activities/.

References

  1. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: ICCV (2019)

    Google Scholar 

  2. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: CVPR (2016)

    Google Scholar 

  3. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: CVPR (2018)

    Google Scholar 

  4. Zhong, J.X., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection. In: CVPR (2019)

    Google Scholar 

  5. Antić, B., Ommer, B.: Video parsing for abnormality detection. In: ICCV (2011)

    Google Scholar 

  6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  7. Raghu, A., Raghu, M., Bengio, S., Vinyals, O.: Rapid learning or feature reuse? Towards understanding the effectiveness of MAML. arXiv preprint arXiv:1909.09157 (2019)

  8. Liu, W., W. Luo, D.L., Gao, S.: Future frame prediction for anomaly detection - a new baseline. In: CVPR (2018)

    Google Scholar 

  9. Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: CVPR (2009)

    Google Scholar 

  10. Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. In: CVPR (2010)

    Google Scholar 

  11. Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: CVPR (2011)

    Google Scholar 

  12. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 FPS in MATLAB. In: ICCV (2013)

    Google Scholar 

  13. Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection. In: BMVC (2015)

    Google Scholar 

  14. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoencoder for video anomaly detection. In: Proceedings of the 25th ACM international conference on Multimedia (2017)

    Google Scholar 

  15. Nguyen, T.N., Meunier, J.: Anomaly detection in video sequence with appearance-motion correspondence. In: ICCV (2019)

    Google Scholar 

  16. Vu, H., Nguyen, T.D., Le, T., Luo, W., Phung, D.: Robust anomaly detection in videos using multilevel representations. In: AAAI (2019)

    Google Scholar 

  17. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. 40 (2017)

    Google Scholar 

  18. Thrun, S., Pratt, L.: Learning to learn: Introduction and overview. In: Thrun, S., Pratt, L. (eds.) Learning to Learn, pp. 3–17. Springer, Boston (1998). https://doi.org/10.1007/978-1-4615-5529-2_1

    Chapter  MATH  Google Scholar 

  19. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS (2017)

    Google Scholar 

  20. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: CVPR (2018)

    Google Scholar 

  21. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NIPS (2016)

    Google Scholar 

  22. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. In: ICLR (2018)

    Google Scholar 

  23. Munkhdalai, T., Yu, H.: Meta networks. In: ICML (2017)

    Google Scholar 

  24. Oreshkin, B., López, P.R., Lacoste, A.: Tadam: task dependent adaptive metric for improved few-shot learning. In: NeurIPS (2018)

    Google Scholar 

  25. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: ICML (2016)

    Google Scholar 

  26. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: NIPS (2016)

    Google Scholar 

  27. Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML. In: ICLR (2019)

    Google Scholar 

  28. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. In: ICLR (2019)

    Google Scholar 

  29. Choi, J., Kwon, J., Lee, K.M.: Deep meta learning for real-time target-aware visual tracking. In: ICCV (2019)

    Google Scholar 

  30. Gui, L.-Y., Wang, Y.-X., Ramanan, D., Moura, J.M.F.: Few-shot human motion prediction via meta-learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 441–459. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_27

    Chapter  Google Scholar 

  31. Park, E., Berg, A.C.: Meta-tracker: fast and robust online adaptation for visual object trackers. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 587–604. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_35

    Chapter  Google Scholar 

  32. Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. In: BMVC (2017)

    Google Scholar 

  33. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANeT: few-shot image semantic segmentation with prototype alignment. In: ICCV (2019)

    Google Scholar 

  34. Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L.: Meta R-CNN: towards general solver for instance-level low-shot learning. In: ICCV (2019)

    Google Scholar 

  35. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: AAAI (2018)

    Google Scholar 

  36. Lu, Y., Yu, F., Reddy, M.K.K., Wang, Y.: Few-shot scene-adaptive anomaly detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 125–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_8

    Chapter  Google Scholar 

  37. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  38. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  39. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV (2015)

    Google Scholar 

  40. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22

    Chapter  Google Scholar 

  41. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Vision AI Product Center of Excellence in T3K of SK telecom and Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) [2017-0-01779, 2017-0-01780].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohyung Han .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 518 KB)

Supplementary material 2 (mp4 5259 KB)

Supplementary material 3 (mp4 879 KB)

Supplementary material 4 (mp4 1373 KB)

Supplementary material 5 (mp4 2282 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, J., Kim, J., Han, B. (2021). Learning to Adapt to Unseen Abnormal Activities Under Weak Supervision. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12626. Springer, Cham. https://doi.org/10.1007/978-3-030-69541-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69541-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69540-8

  • Online ISBN: 978-3-030-69541-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics