Skip to main content

Composition States of MOFs

  • Chapter
  • First Online:
Physicochemical Aspects of Metal-Organic Frameworks

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The current interest in solid bases constructed from metal–organic frameworks (MOFs) is well-founded. In addition to this, their Catalytic structure allows them to perform admirably in a wide variety of chemical reactions. Because of their unique skeletal system, MOFs cannot support the large array of critical capabilities that traditional solid bases are capable of accommodating. Hence, it is challenging to combine all of these capabilities into a MOF. On the other hand, MOFs for heterogeneous basic catalysis have never been investigated in any study. According to MOFs' structure, metal ions and ligands can cause intrinsic basicity. In this rapidly expanding scientific subject, significant advancement has been achieved over the last 10 years. As a result, in this part, the possibility of using MOFs to manufacture basic catalysts has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Safaei, M., Foroughi, M.M., Ebrahimpoor, N., Jahani, S., Omidi, A., Khatami, M.: A review on metal-organic frameworks: Synthesis and applications. TrAC Trends Anal. Chem. 118, 401–425 (2019). https://doi.org/10.1016/j.trac.2019.06.007

  2. Zhu, L., Liu, X.Q., Jiang, H.L., Sun, L.B.: Metal–organic frameworks for heterogeneous basic catalysis chemical reviews. Chem. Rev. 117(12), 8129–8176 (2017)https://doi.org/10.1021/acs.chemrev.7b00091

  3. Platero Prats, A.E., de la Peña-O’Shea, V.A., Iglesias, M., Snejko, N., Monge, A., Gutiérrez-Puebla, E.: Heterogeneous catalysis with alkaline-earth metal-based MOFs: a green calcium catalyst. ChemCatChem 2, 147−149 (2010).https://doi.org/10.1002/cctc.200900228

  4. Chevreau, H., Devic, T., Salles, F., Maurin, G., Stock, N., Serre, C.: Mixed-linker hybrid superpolyhedra for the production of a series of large-pore iron (III) carboxylate metal−organic frameworks. Angew. Chem Int. Ed. 52, 5056–5060 (2013). https://doi.org/10.1002/anie.201300057

    Article  Google Scholar 

  5. Garibay, S.J., Cohen, S.M.: Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem. Commun. 46, 7700–7702 (2010). https://doi.org/10.1039/C0CC02990D

    Article  Google Scholar 

  6. Zhang, C., Xiao, Y., Liu, D., Yang, Q., Zhong, C.: A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture. Chem. Commun. 49, 600–602 (2013). https://doi.org/10.1039/C2CC37621K

    Article  Google Scholar 

  7. Marx, S., Kleist, W., Huang, J., Maciejewski, M., Baiker, A.: Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53 (Al). Dalton Trans. 39, 3795–3798 (2010). https://doi.org/10.1039/C002483J

    Article  Google Scholar 

  8. Dietzel, P.D., Panella, B., Hirscher, B., Blom, M., Fjellvåg, R.: Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem. Commun. 959−961 (2006).https://doi.org/10.1039/B515434K

  9. Gotthardt, M.A., Grosjean, S., Brunner, T.S., Kotzel, J., Ganzler, A.M., Wolf, S., Brase, S., Kleist, W.: Synthesis and post- synthetic modification of amine-, alkyne-, azide- and nitro- functionalized metal-organic frameworks based on DUT-5. Dalton Trans. 44, 16802–16809 (2015). https://doi.org/10.1039/C5DT02276B

    Article  Google Scholar 

  10. Aguilera-Sigalat, J., Bradshaw, D.A.: Colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification. Chem. Commun. 50, 4711–4713 (2014). https://doi.org/10.1039/C4CC00659C

    Article  Google Scholar 

  11. Dong, X.W., Liu, T., Hu, Y.Z., Liu, X.Y., Che, C.M.: Urea postmodified in a metal-organic framework as a catalytically active hydrogen-bond-donating heterogeneous catalyst. Chem. Commun. 49, 7681−7683 (2013). https://doi.org/10.1039/C3CC42531B

  12. Kim, J., Kim, S.N., Jang, H.G., Seo, G., Ahn, W.S.: CO2 cycloaddition of styrene oxide over MOF catalysts. Appl. Catal. A 453, 175−180 (2013). https://doi.org/10.3389/fenrg.2014.00063

  13. Toyao, T., Saito, M., Horiuchi, Y., Matsuoka, M.: Development of a novel one-pot reaction system utilizing a bifunctional Zr-based metal-organic framework. Catal. Sci. Technol. 4, 625–628 (2014). https://doi.org/10.1039/C3CY00917C

    Article  Google Scholar 

  14. Long, J.L., Wang, S.B., Ding, Z.X., Wang, S.C., Zhou, Y.E., Huang, L., Wang, X.X.: Amine-functionalized zirconium metal- organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem. Commun. 48, 11656–11658 (2012). https://doi.org/10.1039/C2CC34620F

    Article  Google Scholar 

  15. Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., De Vos, D.: An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chem. Commun. 47, 1521–1523 (2011). https://doi.org/10.1039/C0CC03038D

    Article  Google Scholar 

  16. Shen, L.J., Liang, S.J., Wu, W., Liang, M., Wu, R.W.: Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr (VI). Dalton Trans. 42, 13649–13657 (2013). https://doi.org/10.1039/C3DT51479J

    Article  Google Scholar 

  17. Yang, Y., Yao, H.F., Xi, F.G., Gao, E.Q.: Amino- functionalized Zr(IV) metal-organic framework as bifunctionalacid-base catalyst for knoevenagel condensation. J. Mol. Catal. A Chem. 390, 198−205 (2014). https://doi.org/10.1016/j.molcata.2014.04.002

  18. Timofeeva, M.N., Panchenko, V.N., Jun, J.W., Hasan, Z., Matrosova, M.M., Jhung, S.H.: Effects of linker substitution on catalytic properties of porous zirconium terephthalate UiO-66 in acetalization of benzaldehyde with methanol. Appl. Catal. A 471, 91−97 (2014). https://doi.org/10.1021/acsanm.9b01403

  19. Srirambalaji, R., Hong, S., Natarajan, R., Yoon, M., Hota, R., Kim, R., Ko, Y., Kim, Y.H.: Tandem catalysis with a bifunctional site- isolated Lewis acid-bronsted base metal-organic framework, NH2-MIL-101(Al). Chem. Commun. 48, 11650–11652 (2012). https://doi.org/10.1039/C2CC36678A

    Article  Google Scholar 

  20. Hartmann, M., Fischer, M.: Amino-functionalized basic catalysts with MIL-101 structure. Microporous Mesoporous Mater. 164, 38–43 (2012). https://doi.org/10.1016/j.micromeso.2012.06.044

    Article  Google Scholar 

  21. Wang, D.K., Huang, R.K., Liu, W.J., Sun, D.R., Li, Z.H.: Fe- Based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 4, 4254–4260 (2014). https://doi.org/10.1021/cs501169t

    Article  Google Scholar 

  22. Wang, D., Li, Z.: Bi-functional NH2-MIL-101(Fe) for one-pot tandem photo-oxidation/knoevenagel condensation between aromatic alcohols and active methylene compounds. Catal. Sci. Technol. 5, 1623–1628 (2015). https://doi.org/10.1021/cs501169t

    Article  Google Scholar 

  23. Rodenas, T., van Dalen, M., Garcia-Perez, E., Serra-Crespo, P., Zornoza, B., Kapteijn, F., Gascon, J.: Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI. Adv. Funct. Mater. 24, 249–256 (2014). https://doi.org/10.1002/adfm.201203462

    Article  Google Scholar 

  24. Zhang, F., Zou, X.Q., Gao, X., Fan, S.J., Sun, F.X., Ren, H., Zhu, G.S.: Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability. Adv. Funct. Mater. 22, 3583–3590 (2012). https://doi.org/10.1002/adfm.201200084

    Article  Google Scholar 

  25. Rodenas, T., van Dalen, M., Serra-Crespo, P., Kapteijn, F., Gascon, J.: Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: influence of structural and operational parameters on the CO2/CH4 separation performance. Microporous Mesoporous Mater. 192, 35−42 (2014). https://doi.org/10.1016/j.micromeso.2013.08.049

  26. Chen, X.Y., Hoang, V.T., Rodrigue, D., Kaliaguine, S.: Optimization of continuous phase in amino-functionalized metal- organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation. RSC Adv. 3, 24266–24279 (2013). https://doi.org/10.1039/C3RA43486A

    Article  Google Scholar 

  27. Sun, D.R., Ye, L., Li, Z.H.: Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Appl. Catal. B 164, 428−432 (2015). https://doi.org/10.1016/j.apcatb.2014.09.054

  28. Vaesen, S., Guillerm, V., Yang, Q.Y., Wiersum, A.D., Marszalek, B., Gil, B., Vimont, A., Daturi, M., Devic, T., Llewellyn, P.L., Serre, C., Maurin, G., Weireld, G.A.: Robust amino- functionalized titanium (IV) based MOF for improved separation of acid gases. Chem. Commun. 49, 10082–10084 (2013). https://doi.org/10.1039/C3CC45828H

    Article  Google Scholar 

  29. Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A.A., Bats, N.: Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. J. Am. Chem. Soc. 132, 12365–12377 (2010). https://doi.org/10.1021/ja103365s

    Article  Google Scholar 

  30. Tran, U.P.N., Le, K.K.A., Phan, N.T.S.: Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catal. 1, 120–127 (2011). https://doi.org/10.1021/cs1000625

    Article  Google Scholar 

  31. Jin, R.Z., Bian, Z., Li, J.Z., Ding, M.X., Gao, L.X.: ZIF-8 crystal coatings on a polyimide substrate and their catalytic behaviours for the knoevenagel reaction. Dalton Trans. 42, 3936–3940 (2013). https://doi.org/10.1039/C2DT32161K

    Article  Google Scholar 

  32. Wu, P., Wang, J., Li, Y., He, C., Xie, Z., Duan, C.: Luminescent sensing and catalytic performances of a multifunctional lanthanide- organic framework comprising a triphenylamine moiety. Adv. Funct. Mater. 21, 2788–2794 (2011). https://doi.org/10.1002/adfm.201100115

    Article  Google Scholar 

  33. Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, S., Kinoshita, K., Kitagawa, Y.: Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. J. Am. Chem. Soc. 129, 2607–2614 (2007). https://doi.org/10.1021/ja067374y

    Article  Google Scholar 

  34. Xiao, J., Chen, C.X., Liu, Q., Ma, Q.X., Dong, J.P.: Cd (II)- schiff-base metal organic frameworks: synthesis, structure, and reversible adsorption and separation of volatile chlorocarbons. Cryst. Growth Des. 11, 5696–5701 (2011). https://doi.org/10.1021/cg201226t

    Article  Google Scholar 

  35. Fang, Q.R., Yuan, D.Q., Sculley, J., Li, J.R., Han, Z.B., Zhou, H.C.: Functional mesoporous metal−organic frameworks for the capture of heavy metal ions and size-selective catalysis. Inorg. Chem. 49, 11637–11642 (2010). https://doi.org/10.1021/ic101935f

    Article  Google Scholar 

  36. Park, J., Li, J.R., Chen, Y.P., Yu, J., Yakovenko, A.A., Wang, Z.U., Sun, L.B., Balbuena, P.B., Zhou, H.-C.: A versatile metal- organic framework for carbon dioxide capture and cooperative catalysis. Chem. Commun. 48, 9995−9997 (2012)https://doi.org/10.1039/C2CC34622B

  37. Kleist, W., Jutz, F., Maciejewski, M., Baiker, A.: Mixed-linker metal-organic frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2. Eur. J. Inorg. Chem., 3552−3561 (2009).https://doi.org/10.1002/ejic.200900509

  38. Dietzel, P.D.C., Morita, Y., Blom, R., Fjellvåg, H.: An in-situ high-temperature single-crystal investigation of a dehydrated metal−organic framework compound and field-induced magnetization of one-dimensional metal−oxygen chains. Angew. Chem. Int. Ed. 44, 6354−6358 (2005). https://doi.org/10.1002/anie.200501508

  39. Rosi, N.L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M., Yaghi, O.M.: Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504–1518 (2005). https://doi.org/10.1021/ja045123o

    Article  Google Scholar 

  40. Geier, S.J., Mason, J.A., Bloch, E.D., Queen, W.L., Hudson, M.R., Brown, C.M., Long, J.R.: Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc)(M = Mg, Mn, Fe Co, Ni, Zn). Chem. Sci. 4, 2054–2061 (2013). https://doi.org/10.1039/C3SC00032J

    Article  Google Scholar 

  41. Liu, J., Tian, J., Thallapally, P.K., McGrail, B.P.: Selective CO2 capture from flue gas using metal−organic frameworks–a fixed bed study. J. Phys. Chem. C 116, 9575−9581 (2012). https://doi.org/10.1021/jp300961j

  42. Remy, T., Peter, S. A., Van der Perre, S., Valvekens, P., De Vos, D.E., Baron, G.V., Denayer, J.F.M.: Selective dynamic CO2 separations on Mg-MOF-74 at low pressures: a detailed comparison with 13X. J. Phys. Chem. C 117, 9301−9310 (2013).https://doi.org/10.1021/jp401923v

  43. Valvekens, P., Vandichel, M., Waroquier, M., Van Speybroeck, V., De Vos, D.: Metal-Dioxidoterephthalate MOFs of the MOF-74 type: microporous basic catalysts with well-defined active sites. J. Catal. 317, 1−10 (2014)

    Google Scholar 

  44. Couck, S., Gobechiya, E., Kirschhock, C.E., Serra-Crespo, P., Juan-Alcañiz, J., Martinez Joaristi, A., Stavitski, E., Gascon, J., Kapteijn, F., Baron, G.V.: Adsorption and separation of light gases on an amino-functionalized metal−organic framework: an adsorption and in situ XRD study. ChemSusChem 5, 740−750 (2012). https://doi.org/10.1039/c5dt02276b

  45. Liu, J., Tian, J., Thallapally, J., McGrail, P.K.: Selective CO2 capture from flue gas using metal−organic frameworks—a fixed bed study. J. Phys. Chem. C 116, 9575−9581 (2012). https://doi.org/10.1021/jp300961j

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshte Hassanzadeh-Afruzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassanzadeh-Afruzi, F., Salehi, M.M. (2023). Composition States of MOFs. In: Maleki, A., Taheri-Ledari, R. (eds) Physicochemical Aspects of Metal-Organic Frameworks. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-18675-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18675-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18674-5

  • Online ISBN: 978-3-031-18675-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics