Skip to main content

Fabry Nephropathy

  • Chapter
  • First Online:
Amyloidosis and Fabry Disease

Abstract

One of the main features of Fabry disease (FD) is insidious and progressive Fabry Nephropathy. These patients should have the same general measures as all patients with proteinuric kidney disease, such as control of proteinuria and hypertension, salt restriction, and modification of lifestyle, in addition to specific therapy. Specific therapy should be individualized for each patient in a sharing decision with the patient and his family. Enzyme replacement therapy (ERT) is appropriate for all patients with FD, regardless of the type of the GLA variant. Chaperone therapy is a choice only for patients with amenable variants and should not be used in patients with eGFR < 30 mL/min/1.73m2 and/or those under 16 years old. Finally, emerging therapies are under research, including next-generation ERT (pegunigalsidase alfa, moss-derived α-galactosidase A), substrate reduction therapy (lucerastat, venglustat), mRNA therapy, and gene therapy, which may provide better control of Fabry disease in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L. Enzymatic defect in Fabry’s disease. Ceramidetrihexosidase deficiency. N Engl J Med. 1967;276:1163–7.

    Article  CAS  Google Scholar 

  2. Pompen AW, Ruiter M, Wyers HJ. Angiokeratoma corporis diffusum (universale) Fabry, as a sign of an unknown internal disease; two autopsy reports. Acta Med Scand. 1947;128:234–55.

    Article  CAS  Google Scholar 

  3. Fabry J. Ein Beitrag Zur Kenntnis der Purpura hemorrhagica nodularis (Purpura papulosa haemorrhagica Hebrae). Arch Dermatol Syphilis. 1898;43:187–200.

    Article  Google Scholar 

  4. Najafian B, Mauer M, Hopkin RJ, Svarstad E. Renal complications of Fabry disease in children. Pediatr Nephrol. 2013;28:679–87.

    Article  Google Scholar 

  5. Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U, et al. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry registry. Mol Genet Metab. 2008;93:112–28.

    Article  CAS  Google Scholar 

  6. Branton MH, Schiffmann R, Sabnis SG, Murray GJ, Quirk JM, Altarescu G, et al. Natural history of Fabry renal disease: influence of alpha- galactosidase a activity and genetic mutations on clinical course. Medicine (Baltimore). 2002;81:122–38.

    Article  CAS  Google Scholar 

  7. Colombi A, Kostyal A, Bracher R, Gloor F, Mazzi R, Tho ̈len H. Angiokeratoma corporis diffusum–Fabry’s disease. Helv Med Acta. 1967;34:67–83.

    CAS  Google Scholar 

  8. Tøndel C, Bostad L, Hirth A, Svarstad E. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis. 2008;51(5):767–76.

    Article  Google Scholar 

  9. Elleder M, Poupetova H, Kozich V. Fetal pathology in Fabry’s disease and mucopolysaccharidosis type I [in Czech]. Cesk Patol. 1998;34:7–12.

    CAS  Google Scholar 

  10. Vedder AC, Strijland A, Vd Bergh Weerman MA, Florquin S, JMFG A, CEM H. Manifestations of Fabry disease in placental tissue. J Inherit Dis. 2006;29:106–11.

    Article  CAS  Google Scholar 

  11. Tsutsumi A, Uchida Y, Kanai T, Tsutsumi O, Satoh K, Sakamoto S. Corneal findings in a fetus with Fabry’s disease. Acta Ophthalmol. 1984;62:923–31.

    Article  CAS  Google Scholar 

  12. Riccio E, Sabbatini M, Bruzzese D, Annicchiarico Petruzzelli L, Pellegrino A, Spinelli L, On behalf of AFFIINITY Group, et al. Glomerular hyperfiltration: an early marker of nephropathy in Fabry disease. Nephron. 2019;141(1):10–7.

    Article  CAS  Google Scholar 

  13. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–37.

    Article  Google Scholar 

  14. Pisani A, Visciano B, Imbriaco M, Di Nuzzi A, Mancini A, Marchetiello C, et al. The kidney in Fabry’s disease. Clin Genet. 2014;86(4):301–9.

    Article  CAS  Google Scholar 

  15. Trimarchi H, Canzonieri R, Muryan A, Schiel A, Araoz A, Forrester M, et al. Copious podocyturia without proteinuria and with normal renal function in a young adult with Fabry Disease. Case Rep Nephrol. 2015;2015:257628–4.

    CAS  Google Scholar 

  16. Politei J, Alberton V, Amoreo O, Antongiovanni N, Arán MN, Barán M, et al. Clinical parameters, LysoGb3, podocyturia, and kidney biopsy in children with Fabry disease: is a correlation possible? Pediatr Nephrol. 2018;33(11):2095–101.

    Article  Google Scholar 

  17. Wornell P, Dyack S, Crocker J, Yu W, Acott P. Fabry disease and nephrogenic diabetes insipidus. Pediatr Nephrol. 2006;21(8):1185–8.

    Article  Google Scholar 

  18. Nakao S, Kodama C, Takenaka T, Tanaka A, Yasumoto Y, Yoshida A, et al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a “renal variant” phenotype. Kidney Int. 2003;64:801–7.

    Article  Google Scholar 

  19. Fervenza FC, Torra R, Warnock DG. Safety and efficacy of enzyme replacement therapy in the nephropathy of Fabry disease. Biologics. 2008;2(4):823–43.

    CAS  Google Scholar 

  20. Anderson LJ, Wyatt KM, Henley W, Nikolaou V, Waldek S, Hughes DA, et al. Long-term effectiveness of enzyme replacement therapy in Fabry disease: results from the NCS-LSD cohort study. J Inherit Metab Dis. 2014;37(6):969–78.

    Article  CAS  Google Scholar 

  21. Germain DP, Charrow J, Desnick RJ, Guffon N, Kempf J, Lachmann RH, et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet. 2015;52(5):353–8.

    Article  CAS  Google Scholar 

  22. Parini R, Pintos-Morell G, Hennermann JB, Hsu TR, Karabul N, Kalampoki V, FOS Study Group, et al. Analysis of renal and cardiac outcomes in male participants in the Fabry outcome survey starting Agalsidase alfa enzyme replacement therapy before and after 18 years of age. Drug Des Devel Ther. 2020;14:2149–58.

    Article  Google Scholar 

  23. Shankland SJ. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 2006;69:2131–47.

    Article  CAS  Google Scholar 

  24. Najafian B, Svarstad E, Bostad L, Gubler MC, Tøndel C, Whitley C, et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int. 2011;79:663–70.

    Article  CAS  Google Scholar 

  25. Najafian B, Tøndel C, Svarstad E, Gubler MC, Oliveira JP, Mauer M. Accumulation of Globotriaosylceramide in podocytes in Fabry nephropathy is associated with progressive podocyte loss. JASN. 2020;31:865–75.

    Article  CAS  Google Scholar 

  26. Fall B, Scott CR, Mauer M, Shankland S, Pippin J, Jefferson JA, et al. Urinary podocyte loss is increased in patients with Fabry disease and correlates with clinical severity of Fabry nephropathy. PLoS One. 2016;11:e0168346.

    Article  Google Scholar 

  27. Trimarchi H, Canzonieri R, Schiel A, Politei J, Stern A, Andrews J, et al. Podocyturia is significantly elevated in untreated vs treated Fabry adult patients. J Nephrol. 2016;29:791–7.

    Article  CAS  Google Scholar 

  28. Liern M, Collazo A, Valencia M, Fainboin A, Isse L, Costales-Collaguazo C, et al. Podocyturia in paediatric patients with Fabry disease. Nefrologia. 2019;39:177–83.

    Article  Google Scholar 

  29. Trimarchi H. Podocyturia: potential applications and current limitations. World J Nephrol. 2017;6(5):221–2.

    Article  Google Scholar 

  30. Wanner C, Oliveira JP, Ortiz A, Mauer M, Germain DP, Linthorst GE, et al. Prognostic indicators of renal disease progression in adults with Fabry disease: natural history data from the Fabry registry. Clin J Am Soc Nephrol. 2010;5:2220–8.

    Article  Google Scholar 

  31. Kriz W, LeHir M. Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int. 2005;67:404–19.

    Article  Google Scholar 

  32. Weideman F, Sanchez-Niño MD, Politei J, Oliveira JP, Wanner C, Warnock DG, Ortiz A. Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J Rare Dis. 2013;8:116.

    Article  Google Scholar 

  33. Shu L, Park JL, Byun J, Pennathur S, Kollmeyer J, Shayman JA. Decreased nitric oxide bioavailability in a mouse model of Fabry disease. J Am Soc Nephrol. 2009;20:1975–85.

    Article  CAS  Google Scholar 

  34. Liebau MC, Braun F, Höpker K, Weitbrecht C, Bartels V, Müller RU, et al. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PlosOne. 2013;8:e63506.

    Article  CAS  Google Scholar 

  35. Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A. 2008;105:2812–7.

    Article  CAS  Google Scholar 

  36. Nowak A, Mechtler TP, Hornemann T, Gawinecka J, Theswet E, Hilz MJ, Kaster DC. Genotype, phenotype and disease severity reflected by serum LysoGb3 levels in patients with Fabry disease. Molecular Genet Metabol. 2018;123:148–53.

    Article  CAS  Google Scholar 

  37. Lenders M, Stypmann J, Duning T, Schmitz B, Brand SM, Brand E. Serum-mediated inhibition of enzyme replacement therapy in Fabry disease. J Am Soc Nephrol. 2016;27:256–64.

    Article  CAS  Google Scholar 

  38. Sanchez-Niño MD, Carpio D, Sanz AB, Ruiz-Ortega M, Mezzano S, Ortiz A. Lyso- Gb3 activates Notch1 in human podocytes. Hum Mol Genet. 2015;24:5720–32.

    Article  Google Scholar 

  39. Choi JY, Shin MY, Suh SH, Park S. Lyso-globotriaosylceramide downregulates KCa3.1 channel expression to inhibit collagen synthesis in fibroblasts. Biochem Biophys Res Commun. 2015;468:883–8.

    Article  CAS  Google Scholar 

  40. Sanchez-Niño MD, Sanz AB, Carrasco S, Saleem MA, Mathieson PW, Valdivielso JM, et al. Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol Dial Transplant. 2011;26:1797–802.

    Article  Google Scholar 

  41. Rozenfeld PA, Bolla MA, Quieta P, Pisani A, Feriozzi S, Neuman P, Bondar C. Pathogenesis od Fabry nephropathy: the pathways leading to fibrosis. Mol Genet Metabol. 2020;129:132–41.

    Article  CAS  Google Scholar 

  42. Chang AS, Hathaway CK, Smithies O, Kakoki M. Transforming growth factor-β1 and diabetic nephropathy. Am J Physiol Ren Physiol. 2016;201(310):F689–96.

    Article  Google Scholar 

  43. Bai X, Geng J, Li X, Yang F, Tian J. VEGF-A inhibition ameliorates podocyte apoptosis via repression of activating protein 1 in diabetes. Am J Nephrol. 2014;40:523–34.

    Article  CAS  Google Scholar 

  44. De Francesco PN, Mucci JM, Ceci R, Fossati CA, Rozenfeld PA. Higher apoptotic state in Fabry disease peripheral blood mononuclear cells: effect of globotriaosylceramide. Mol Genet Metab. 2011;104:319–24.

    Article  Google Scholar 

  45. Joly DA, Grunfeld JP. 3-Nitrotyrosine as a biomarker for vascular involvement in Fabry disease. Kidney Int. 2014;86:5–7.

    Article  CAS  Google Scholar 

  46. Biancini GB, Jacques CE, Hammerschmidt T, de Souza HM, Donida B, Deon M, et al. Biomolecules damage and redox status abnormalities in Fabry patients before and during enzyme replacement therapy. Clin Chim Acta. 2016;461:41.

    Article  CAS  Google Scholar 

  47. Chevrier M, Brakch N, Celine L, Genty D, Ramdani Y, Moll S, et al. Autophagosome maturation is impaired in Fabry disease. Autophagy. 2010;6:589–99.

    Article  CAS  Google Scholar 

  48. Alroy J, Sabnis S, Kopp JB. Renal pathology in Fabry disease. J Am Soc Nephrol. 2002;13(Suppl 2):S134–8.

    Article  Google Scholar 

  49. Rockey DC, Bell PD, Hill JA. Fibrosis–a common pathway to organ injury and failure. N Engl J Med. 2015;373:96.

    Google Scholar 

  50. Meng X-L, Arning E, Wight-Carter M, Day TS, Jabbarzadeh-Tabrizi S, Chen S, et al. Priapism in a Fabry disease mouse model is associated with upregulated penile nNOS and eNOS expression. J Inherit Metab Dis. 2018;41(2):231–8.

    Article  CAS  Google Scholar 

  51. Shu L, Vivekanandan-Giri A, Pennathur S, Smid BE, Aerts JMFG, Hollak CEM, et al. Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease. Kidney Int. 2014;86(1):58–66.

    Article  CAS  Google Scholar 

  52. Silva CAB, Moura-Neto JA, dos Reis MA, Vieira Neto OM, Barreto FC. Renal manifestations of Fabry disease: a narrative review. Can J Kidney Health Dis. 2021;8:1–14.

    Article  Google Scholar 

  53. Trimarchi H, Canzonieri R, Costales-Collaguazo C, Politei J, Stern A, Paulero M, et al. Early decrease in the podocalyxin to synaptopodinratio in urinary Fabry podocytes. Clin Kidney J. 2019;12:53–60.

    Article  CAS  Google Scholar 

  54. Pereira EM, Silva AS, Labilloy A, Monte Neto JT, Monte SJ. Podocyturia in Fabry disease. J Bras Nefrol. 2016;38(1):49–53.

    Article  Google Scholar 

  55. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012;8(5):293–300.

    Article  CAS  Google Scholar 

  56. Riccio E, Sabbatini M, Capuano I, Pisani A. Early biomarkers of Fabry nephropathy: a review of the literature. Nephron. 2019;143(4):274–81.

    Article  CAS  Google Scholar 

  57. Chimenz R, Chirico V, Cuppari C, Ceravolo G, Concolino D, Monardo P, Lacquaniti A. Fabry disease and kidney involvement: starting from childhood to understand the future. Pediatr Nephrol. 2021;37:95. https://doi.org/10.1007/s00467-021-05076-x.

    Article  Google Scholar 

  58. Schiffmann R, Warnock DG, Banikazemi M, Bultas J, Linthorst GE, Packman S, et al. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant. 2009;24(7):2102–11.

    Article  Google Scholar 

  59. Wanner C, Feldt-Rasmussen U, Jovanovic A, Linhart A, Yang M, Ponce E, et al. Cardiomyopathy and kidney function in agalsidase beta-treated female patients: a pre-treatment vs. post-treatment analysis. ESC Heart Fail. 2020;7(3):825–34.

    Article  Google Scholar 

  60. Ortiz A, Cianciaruso B, Cizmarik M, Germain DP, Mignani R, Oliveira JP, et al. End-stage renal disease in patients with Fabry disease: natural history data from the Fabry registry. Nephrol Dial Transplant. 2010;25(3):769–75.

    Article  Google Scholar 

  61. Germain DP, Brand E, Burlina A, Cecchi F, Garman SC, Kempf J, et al. Phenotypic characteristics of the p.Asn215Ser (p.N215S) GLA mutation in male and female patients with Fabry disease: a multicenter Fabry registry study. Mol Genet Genomic Med. 2018;6(4):492–503.

    Article  CAS  Google Scholar 

  62. Azevedo O, Gago MF, Miltenberger-Miltenyi G, Robles AR, Costa MA, Pereira O, et al. Natural history of the late-onset phenotype of Fabry disease due to the p.F113 L mutation. Mol Genet Metab Rep. 2020;22:100565.

    Article  CAS  Google Scholar 

  63. Branton M, Schiffmann R, Kopp JB. Natural history and treatment of renal involvement in Fabry disease. J Am Soc Nephrol. 2002;13(Suppl 2):S139–43.

    Article  Google Scholar 

  64. Ries M, Bettis KE, Chyke P, Kopp JB, Austin HA 3rd, Brady RO, Schiffmann R. Parapelvic kidney cysts: a distinguishing feature with high prevalence in Fabry disease. Kidney Int. 2004;66(3):978–82.

    Article  Google Scholar 

  65. Pisani A, Petruzzelli Annicchiarico L, Pellegrino A, Bruzzese D, Feriozzi S, Imbriaco M, et al. Parapelvic cysts, a distinguishing feature of renal Fabry disease. Nephrol Dial Transplant. 2018;33(2):318–23.

    Article  CAS  Google Scholar 

  66. Abensur H, Reis MA. Renal involvement in Fabry disease. J Bras Nefrol. 2016;38(2):245–54.

    Article  Google Scholar 

  67. Brady RO, Uhlendorf BW, Jacobson CB. Fabry’s disease: antenatal detection. Science. 1971;172(3979):174–5.

    Article  CAS  Google Scholar 

  68. Fogo AB, Bostad L, Svarstad E, Cook WJ, Moll S, Barbey F, et al. Scoring system for renal pathology in Fabry disease: report of the international study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant. 2010;25(7):2168–77.

    Article  Google Scholar 

  69. Tøndel C, Kanai T, Larsen KK, Ito S, Politei JM, Warnock DG, Svarstad E. Foot process effacement is an early marker of nephropathy in young classic Fabry patients without albuminuria. Nephron. 2015;129(1):16–21.

    Article  Google Scholar 

  70. Levstek T, Vujkovac B, Podkrajsek KT. Biomarkeres of Fabry nephropathy: review and future perspective. Genes. 2020;11:1091.

    Article  CAS  Google Scholar 

  71. Nakamichi T, Miyazaki M, Yamamoto T, Sato H, Ito S. Morphological details of renal lesions in late-onset normoalbuminuric Fabry disease. Nephron Clin Pract. 2015;130:86.

    Google Scholar 

  72. Waldek S, Feriozzi S. Fabry nephropathy: a review–how can we optimize the management of Fabry nephropathy? BMC Nephrol. 2014;15:72.

    Article  Google Scholar 

  73. Monte Neto JT, Aldeman NLS, Chaves RV, Silva AS, Pereira EM, Brandão RMSS, et al. Coexistence of Fabry disease and immune complex glomerulonephritis: repost of two cases in a single family. REAS/EJCH. 2019;11(12):e503 1–9.

    Google Scholar 

  74. Tøndel C, Bostad L, Larsen KK, Hirth A, Vikse BE, Houge G, Svarstad E. Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol. 2013;24(1):137–48.

    Article  Google Scholar 

  75. Mauer M, Sokolovskiy A, Barth JA, Castelli JP, Williams HN, Benjamin ER, Najafian B. Reduction of podocyte globotriaosylceramide conten in adult male patients with Fabry disease with amenable GLA mutations following 6 months of migalastat treatment. J Med Genet. 2017;54:781–6.

    Article  CAS  Google Scholar 

  76. Colpart P, Félix S. Fabry nephropathy. Arch Pathol Lab Med. 2017;141(8):1127–31.

    Article  CAS  Google Scholar 

  77. de Menezes Neves PDM, Machado JR, Custodio FB, Monteiro MLGR, Iwamoto S, Freire M, et al. Ultrastructural deposits appearing as “zebra bodies” in renal biopsy: Fabry disease?–comparative case reports. BMC Nephrol. 2017;18(1):157.

    Article  Google Scholar 

  78. Svarstad E, Leh S, Skrunes R, Larsen KK, Eikrem Ø, Tøndel C. bedside stereomicroscopy of Fabry kidney biopsies: an easily available method for diagnosis and assessment of sphingolipid deposits. Nephron. 2018;138:13–21.

    Article  CAS  Google Scholar 

  79. Valbuena C, Leitão D, Carneiro F, Oliveira JP. Immunohistochemical diagnosis of Fabry nephropathy and localization of globotriaosylceramide deposits in paraffin-embedded kidney tissue sections. Virchows Arch. 2012;460:211–21.

    Article  CAS  Google Scholar 

  80. Eikrem Ø, Skrunes R, Tøndel C, Leh S, Houge G, Svarstad E, Marti H-P. Pathomechanisms of renal Fabry disease. Cell Tissue Res. 2017;369(1):53–6.

    Article  Google Scholar 

  81. Aguiar P, Azevedo O, Pinto R, Marino J, Baker R, Cardoso C, et al. New biomarkers defining a novel early stage of Fabry nephropathy: a diagnostic test study. Mol Genet Metab. 2017;121(2):162–9.

    Article  CAS  Google Scholar 

  82. Shimohata H, Ogawa Y, Maruyama H, Hirayama K, Kobayashi M. A renal variant of Fabry disease diagnosed by the presence of urinary mulberry cells. Intern Med. 2016;55(23):3475–8.

    Article  Google Scholar 

  83. Sanchez-Niño MD, Perez-Gomez MV, Valiño-Rivas L, Torra R, Ortiz A. Podocyturia: why it may have added value in rare diseases. Clin Kidney J. 2018;12(1):49–52.

    Article  Google Scholar 

  84. Mauer M, Glynn E, Svarstad E, Tøndel C, Gubler M-C, West M, et al. Mosaicism of podocyte involvement is related to podocyte injury in females with Fabry disease. PLoS One. 2014;9(11):e112188.

    Article  Google Scholar 

  85. Vedder AC, Linthorst GE, van Breemen MJ, Groener JE, Bemelman FJ, Strijland A, et al. The Dutch Fabry cohort: diversity of clinical manifestations and Gb3 levels. J Inherit Metab Dis. 2007;30(1):68–78.

    Article  CAS  Google Scholar 

  86. Moura AP, Hammerschmidt T, Deon M, Giugliani R, Vargas CR. Investigation of correlation of urinary globotriaosylceramide (Gb3) levels with markers of renal function in patients with Fabry disease. Clin Chim Acta. 2018;478:62–7.

    Article  CAS  Google Scholar 

  87. Smid BE, van der Tol L, Biegstraaten M, Linthorst GE, Hollak CE, Poorthuis BJ. Plasma globotriaosylsphingosine in relation to phenotypes of Fabry disease. J Med Genet. 2015;52(4):262–8.

    Article  CAS  Google Scholar 

  88. Nowak A, Mechtler TP, Desnick RJ, Kasper DC. Plasma LysoGb3: a useful biomarker for the diagnosis and treatment. Mol Genet Metab. 2017;120:57–61.

    Article  CAS  Google Scholar 

  89. Maruyama H, Miyata K, Mikame M, Taguchi A, Guili C, Shimura M, et al. Effectiveness of plasma lyso-Gb3 as a biomarker for selecting high-risk patients with Fabry disease from multispecialty clinics for genetic analysis. Genet Med. 2019;21(1):44–52.

    Article  Google Scholar 

  90. Lavoie P, Boutin M, Auray-Blais C. Multiplex analysis of novel urinary lyso-Gb3-related biomarkers for Fabry disease by tandem mass spectrometry. Anal Chem. 2013;85(3):1743–52.

    Article  CAS  Google Scholar 

  91. DuPont FO, Gagnon R, Boutin M, Auray-Blais C. A metabolomic study reveals novel plasma lyso-Gb3 analogs as Fabry disease biomarkers. Curr Med Chem. 2013;20(2):280–8.

    Article  CAS  Google Scholar 

  92. Boutin M, Auray-Blais C. Multiplex tandem mass spectrometry analysis of novel plasma lyso-Gb3-related analogs in Fabry disease. Anal Chem. 2014;86(7):3476–83.

    Article  CAS  Google Scholar 

  93. Alharbi FJ, Baig S, Rambhatla SB, Vijapurapu R, Auray-Blais C, Boutin M, et al. The clinical utility of total concentration of urinary globotriaosylsphingosine plus its analogs in the diagnosis of Fabry disease. Clin Chim Acta. 2020;500:120–7.

    Article  CAS  Google Scholar 

  94. Ortiz A, Oliveira JP, Wanner C, Brenner BM, Waldek S, Warnock DG. Recommendations and guidelines for the diagnosis and treatment of Fabry nephropathy in adults. Nat Clin Pract Nephrol. 2008;4(6):327–36.

    Article  Google Scholar 

  95. Ortiz A, Germain DP, Desnick RJ, Politei J, Mauer M, Burlina A, et al. Fabry disease revisited: management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123(4):416–27.

    Article  CAS  Google Scholar 

  96. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    Article  Google Scholar 

  97. https://www.garrod.ca/wp-conent/uploads/2019/04/Canadian-Fabry-Treatment-Guidelines-2018-final.pdf.

  98. Mehta A, Beck M, Elliot P, Giugliani R, Linhart A, Sunder-Plassmann G, et al. Fabry outcome survey investigators. Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: an analysis of registry data. Lancet. 2009;374:1986–96.

    Article  CAS  Google Scholar 

  99. Warnock DG, Ortiz A, Mauer M, Linthorst GE, Oliveira JP, Serra AL, et al. Renal outcomes of agalsidase beta treatment for Fabry disease: role of proteinuria and timing of treatment initiation. Nephrol Dial Transplant. 2012;27:1042–9.

    Article  CAS  Google Scholar 

  100. Madsen CV, Granqvist H, Petersen JH, Rasmussen AK, Lund AM, Oturai P, et al. Age-related renal function decline in Fabry disease patients on enzyme replacement therapy: a longitudinal cohort study. Nephrol Dial Transplant. 2019;34(9):1525–33.

    Article  CAS  Google Scholar 

  101. Lenders M, Canaan-Kuhl S, Kramer J, Duning T, Reiermann S, Sommer C, et al. Patients with Fabry disease after enzyme replacement therapy dose reduction and Switch-2-year follow-up. J Am Soc Nephrol. 2016;27(3):952–62.

    Article  CAS  Google Scholar 

  102. Skrunes R, Svarstad E, Kampevold Larsen K, Leh S, Tøndel C. Reaccumulation of globo triaosylceramide in podocytes after agalsidase dose reduction in young Fabry patients. Nephrol Dial Transplant. 2017;32(5):807–13.

    CAS  Google Scholar 

  103. Krämer J, Lenders M, Canaan-Kühl S, Nordbeck P, Üçeyler N, Blaschke D, et al. Fabry disease under enzyme replacement therapy-new insights in efficacy of different dosages. Nephrol Dial Transplant. 2018;33(8):1362–72.

    Article  Google Scholar 

  104. Schiffmann R, Askari H, Timmons M, Robinson C, Benko W, Brady RO, Ries M. Weekly enzyme replacement therapy may slow decline of renal function in patients with Fabry disease who are on long-term biweekly dosing. J Am Soc Nephrol. 2007;18(5):1576–8.

    Article  CAS  Google Scholar 

  105. Schiffmann R, Swift C, Wang X, Blankenship D, Ries M. A prospective 10-year study of individualized, intensified enzyme replacement therapy in advanced Fabry disease. J Inherit Metab Dis. 2015;38(6):1129–36.

    Article  CAS  Google Scholar 

  106. Skrunes R, Tøndel C, Leh S, Larsen KK, Houge G, Davidsen ES, et al. Long-term dose-dependent agalsidase effects on kidney histology in Fabry disease. Clin J Am Soc Nephrol. 2017;12(9):1470–9.

    Article  CAS  Google Scholar 

  107. Lenders M, Brand E. Mechanisms of neutralizing anti-drug antibody formation and clinical relevance on therapeutic efficacy of enzyme replacement therapies in Fabry disease. Drugs. 2021;81(17):1969–81.

    Article  CAS  Google Scholar 

  108. Azevedo O, Gago MF, Miltenberger-Miltenyi G, Sousa N, Cunha D. Fabry disease therapy: state-of-the-art and current challenges. Int J Mol Sci. 2020;22(1):206.

    Article  Google Scholar 

  109. Hughes DA, Nicholls K, Shankar SP, Sunder-Plassmann G, Koeller D, Nedd K, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomized phase III ATTRACT study. J Med Genet. 2017;54(4):288–96.

    Article  CAS  Google Scholar 

  110. Germain DP, Nicholls K, Giugliani R, Bichet DG, Hughes DA, Barisoni LM, et al. Efficacy of the pharmacologic chaperone migalastat in a subset of male patients with the classic phenotype of Fabry disease and migalastat-amenable variants: data from the phase 3 randomized, multicenter, double-blind clinical trial and extension study. Genet Med. 2019;21(9):1987–97.

    Article  CAS  Google Scholar 

  111. Lenders M, Nordbeck P, Kurschat C, Eveslage M, Karabul N, Kaufeld J, Hennermann JB, et al. Treatment of Fabry disease with migalastat-outcome from a prospective 24 months observational multicenter study (FAMOUS). Eur Heart J Cardiovasc Pharmacother. 2021:211.

    Google Scholar 

  112. KDIGO. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2012;2013(3):1–150.

    Google Scholar 

  113. McCafferty EH, Scott LJ. Migalastat. A review in Fabry disease. Drugs. 2019;79(5):543–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Helena Vaisbich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaisbich, M.H., de Andrade, L.G.M., Silva, C.A.B., Barreto, F.C., dos Reis, M.A. (2023). Fabry Nephropathy. In: Xavier de Ávila, D., Villacorta Junior, H. (eds) Amyloidosis and Fabry Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-17759-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17759-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17758-3

  • Online ISBN: 978-3-031-17759-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics