Skip to main content

Improved Wake-Up Receiver Architectures with Carrier Sense Capabilities for Low-Power Wireless Communication

  • Conference paper
  • First Online:
Sensor Networks (SENSORNETS 2021, SENSORNETS 2020)

Abstract

For power-limited wireless sensor networks, energy efficiency is a critical concern. Receiving packages is proven to be one of the most power-consuming tasks in a WSN. To address this problem, the asynchronous communication is based on wake-up receivers. The proposed receiver circuit can detect on-off keying pulses inside the 868 MHz band with a sensitivity of \({-60}\) dBm. The power consumption of the circuit is only 3.6 \(\upmu {W}\). The circuit design is kept simple, only requiring commercial off-the-shelf components like general-purpose operational amplifiers and comparators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agilent Technologies: Agilent HSMS-285x SeriesSurface Mount Zero Bias Schottky Detector Diodes, June 2005. (datasheet)

    Google Scholar 

  2. ams AG: AS1976. AS1977 Ultra-Low Current, 1.8 V Comparators (2007). (datasheet)

    Google Scholar 

  3. Ansari, J., Pankin, D., Mähönen, P.: Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. Int. J. Wirel. Inf. Netw. 16, 118–130 (2008). https://doi.org/10.1007/s10776-009-0100-6

  4. Atmel: AT86RF233 - Low Power, 2.4GHz Transceiver for ZigBee, RF4CE, IEEE 802.15.4, 6LoWPAN, and ISM Applications (2014)

    Google Scholar 

  5. Bahl, I., Bhartia, P.: Microwave Solid State Circuit Design. Wiley, New York (2003)

    Google Scholar 

  6. Bdiri, S., Derbel, F., Kanoun, O.: A tuned-RF duty-cycled wake-up receiver with \(-\)90 dbm sensitivity. Sensors 18(1), 86 (2018). https://doi.org/10.3390/s18010086,https://www.mdpi.com/1424-8220/18/1/86

  7. Bdiri, S., Derbel, F., Kanoun, O.: A wake-up receiver for online energy harvesting enabled wireless sensor networks: technology, components and system design, pp. 305–320. De Gruyter Oldenbourg, November 2018. https://doi.org/10.1515/9783110445053-018

  8. Cabarcas, F., Aranda, J., Mendez, D.: OpenWuR - an open WSN platform for WuR-based application prototyping. In: Proceedings of the 2020 International Conference on Embedded Wireless Systems and Networks on Proceedings of the 2020 International Conference on Embedded Wireless Systems and Networks, pp. 212–217. EWSN 2020, Junction Publishing, USA (2020)

    Google Scholar 

  9. Chee-Yee Chong, Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. Proc. IEEE 91(8), 1247–1256 (2003). https://doi.org/10.1109/JPROC.2003.814918

  10. Friis, H.T.: A note on a simple transmission formula. Proc. IRE 34(5), 254–256 (1946). https://doi.org/10.1109/JRPROC.1946.234568

    Article  Google Scholar 

  11. Fromm, R., Schott, L., Derbel., F.: An efficient low-power wake-up receiver architecture for power saving for transmitter and receiver communications. In: Proceedings of the 10th International Conference on Sensor Networks - SENSORNETS, pp. 61–68. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010236400610068

  12. Galante-Sempere, D., Ramos-Valido, D., Lalchand Khemchandani, S., del Pino, J.: Low-power RFED wake-up receiver design for low-cost wireless sensor network applications. Sensors 20(22), 6406 (2020). https://doi.org/10.3390/s20226406, https://www.mdpi.com/1424-8220/20/22/6406

  13. Gamm, G.U., Sippel, M., Kostic, M., Reindl, L.M.: Low power wake-up receiver for wireless sensor nodes. In: 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 121–126 (2010). https://doi.org/10.1109/ISSNIP.2010.5706778

  14. Kazdaridis, G., Sidiropoulos, N., Zografopoulos, I., Korakis, T.: eWake: A Novel Architecture for Semi-Active Wake-Up Radios Attaining Ultra-High Sensitivity at Extremely-Low Consumption (2021)

    Google Scholar 

  15. Magno, M., et al.: Design, implementation, and performance evaluation of a flexible low-latency nanowatt wake-up radio receiver. IEEE Trans. Indus. Inf. 12(2), 633–644 (2016). https://doi.org/10.1109/TII.2016.2524982

    Article  MathSciNet  Google Scholar 

  16. Microchip: MCP6141/2/3/4 - 600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps (2019). (datasheet)

    Google Scholar 

  17. Piyare, R., Amy.L.Murphy, Kiraly, C., Tosato, P., Brunelli, D.: Ultra low power wake-up radios: a hardware and networking survey. IEEE Commun. Surv. Tutor. 19, 2117–2157 (2017). https://doi.org/10.1109/COMST.2017.2728092

  18. RF360 Europe GmbH: SAW RF filter - B39871B3725U410 (2019). (datasheet)

    Google Scholar 

  19. SkyWorks Inc.: Mixer and Detector Diodes, August 2008. https://www.skyworksinc.com/search?q=200826a

  20. Skyworks Solutions Inc: Surface-Mount Mixer and Detector Schottky Diodes, June 2018. (datasheet)

    Google Scholar 

  21. STMicroelectronics NV: TS881 - Rail-to-rail 0.9 V nanopower comparator, December 2013. (datasheet)

    Google Scholar 

  22. Texas Instruments: Single-Supply Op Amp Design Techniques, Mar 2001. (Application report)

    Google Scholar 

  23. Texas Instruments: TLV3691 0.9-V to 6.5-V, Nanopower Comparator, November 2015. (datasheet)

    Google Scholar 

  24. Texas Instruments: LPV7215 Micropower, CMOS Input, RRIO, 1.8-V, Push-Pull Output Comparator, August 2016. (datasheet)

    Google Scholar 

  25. Texas Instruments: TLV521 NanoPower, 350nA, RRIO, CMOS Input, Operational Amplifier, May 2016. (datasheet)

    Google Scholar 

  26. Tran, L.-G., Cha, H.-K., Park, W.-T.: RF power harvesting: a review on designing methodologies and applications. Micro Nano Syst. Lett. 5(1), 1–16 (2017). https://doi.org/10.1186/s40486-017-0051-0

    Article  Google Scholar 

Download references

Acknowledgment

This work is financially supported by Leipzig University of Applied Sciences by funds of Sächsisches Staatsministerium für Wissenschaft, Kultur und Tourismus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fromm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fromm, R., Schott, L., Derbel, F. (2022). Improved Wake-Up Receiver Architectures with Carrier Sense Capabilities for Low-Power Wireless Communication. In: Ahrens, A., Prasad, R.V., Benavente-Peces, C., Ansari, N. (eds) Sensor Networks. SENSORNETS SENSORNETS 2021 2020. Communications in Computer and Information Science, vol 1674. Springer, Cham. https://doi.org/10.1007/978-3-031-17718-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17718-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17717-0

  • Online ISBN: 978-3-031-17718-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics