Skip to main content

Autophagy in Mesenchymal Stem Cell-Based Therapy

  • Chapter
  • First Online:
Autophagy in Stem Cell Maintenance and Differentiation

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 73))

  • 264 Accesses

Abstract

Mesenchymal stem cells (MSCs) are adult stem cells which are, due to their huge differentiation potential, potent immunomodulatory and pro-angiogenic properties, considered as new therapeutic agents in regenerative medicine. Although MSC-based therapy holds a great potential in the treatment of inflammatory and degenerative diseases, there are several issues that limit therapeutic efficacy of MSCs. Due to the low survival of engrafted cells, high number of MSCs has to be transplanted to achieve optimal therapeutic benefits. A large number of evidence demonstrated that modulation of autophagy-related pathways in engrafted MSCs may increase viability and survival of transplanted MSCs, enhancing their potential for differentiation. immunomodulatory and pro-angiogenic properties. In this chapter, we summarized current knowledge about the role of autophagy in MSC-based therapy of inflammatory, ischemic, and degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3-MA:

3-methyladenine

aGVHD:

Acute Graft-versus-Host Disease

AT-MSCs:

Adipose tissue-derived mesenchymal stem cells

AD:

Alzheimer's disease

ATG7:

Autophagy Related gene 7

bFGF:

Basic fibroblast growth factor

Bcl-2:

B-cell leukemia/lymphoma-2

CNS:

Central nervous system

CMA:

Chaperone-mediated autophagy

DCs:

Dendritic cells

EAE:

Experimental autoimmune encephalomyelitis

iPSC-MSC-EVs:

Extracellular vesicles isolated from MSCs previously derived from human induced pluripotent stem cells

GIOP:

Glucocorticoid-induced osteoporosis

HLA:

Human leukocyte antigen

HD:

Huntington disease

IDO:

Indoleamine 2,3-dioxygenase

IFN-γ:

Interferon gamma

JAK-STAT:

Janus kinase-Signal transducer and activator of transcription

JNK:

Jun N-terminal kinases

mTORC1:

Mechanistic target of rapamycin complex 1

MSCs:

Mesenchymal stem cells

MAPKs:

Mitogen-activated protein kinases

MAIT:

Mucosal-associated invariant T

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PD:

Parkinson's disease

PE:

phosphatidyl ethanol amine

PI3K:

Phosphatidylinositol-3-kinase complex

PGE2:

Prostaglandin E2

PKB/AKT:

protein kinase B activation

ROS:

reactive oxygen species

SDF-1:

stromal cell derived factor 1

SLE:

ystemic lupus erythematosus

(T-MSCs):

Tonsil-derived MSCs

(TGF-β):

transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

UVRAG:

UV irradiation resistance-associated tumor suppressor gene

Vps34:

Vacuolar protein sorting 34

References

  1. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–47

    Google Scholar 

  2. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  3. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–7

    Google Scholar 

  4. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412–423

    Article  CAS  PubMed  Google Scholar 

  5. Kassis I, Zangi L, Rivkin R, Levdansky L, Samuel S, Marx G, Gorodetsky R (2006) Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 37:967–976

    Article  CAS  PubMed  Google Scholar 

  6. Agha-Hosseini F, Jahani MA, Jahani M, Mirzaii-Dizgah I, Ali-Moghaddam K (2010) In vitro isolation of stem cells derived from human dental pulp. Clin Transplant 24:E23–E28

    Article  CAS  PubMed  Google Scholar 

  7. Roubelakis MG, Pappa KI, Bitsika V, Zagoura D, Vlahou A, Papadaki HA, Antsaklis A, Anagnou NP (2007) Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev. 16:931–952

    Article  CAS  PubMed  Google Scholar 

  8. Vellasamy S, Sandrasaigaran P, Vidyadaran S, George E, Ramasamy R (2012) Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World J Stem Cells 4:53–61

    Article  PubMed  PubMed Central  Google Scholar 

  9. Girdlestone J, Limbani VA, Cutler AJ, Navarrete CV (2009) Efficient expansion of mesenchymal stromal cells from umbilical cord under low serum conditions. Cytotherapy 11:738–748

    Article  CAS  PubMed  Google Scholar 

  10. Batsali AK, Pontikoglou C, Koutroulakis D, Pavlaki KI, Damianaki A, Mavroudi I, Alpantaki K, Kouvidi E, Kontakis G, Papadaki HA (2017) Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton’s jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 8:102

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gazdic M, Volarevic V, Harrell CR, Fellabaum C, Jovicic N, Arsenijevic N, Stojkovic M (2018) Stem cells therapy for spinal cord injury. Int J Mol Sci 19:1039

    Article  PubMed Central  Google Scholar 

  12. Volarevic V, Nurkovic J, Arsenijevic N, Stojkovic M (2014) Concise review: therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells 32:2818–2823

    Article  CAS  PubMed  Google Scholar 

  13. Harrell CR, Volarevic A, Djonov V, Volarevic V (2021) Mesenchymal stem cell-derived exosomes as new remedy for the treatment of neurocognitive disorders. Int J Mol Sci 22:1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harrell CR, Djonov V, Volarevic V (2021) The cross-talk between mesenchymal stem cells and immune cells in tissue repair and regeneration. Int J Mol Sci 22:2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V (2019) Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells 8:467

    Article  CAS  PubMed Central  Google Scholar 

  16. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N (2019) Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 76:3323–3348

    Article  CAS  PubMed  Google Scholar 

  17. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako M, Stojkovic M (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15:36–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harrell CR, Volarevic V (2021) Apoptosis: a friend or foe in mesenchymal stem cell-based immunosuppression. Adv Protein Chem Struct Biol 126:39–62

    Article  CAS  PubMed  Google Scholar 

  19. Jakovljevic J, Harrell CR, Fellabaum C, Arsenijevic A, Jovicic N, Volarevic V (2018) Modulation of autophagy as new approach in mesenchymal stem cell-based therapy. Biomed Pharmacother 104:404–410

    Article  CAS  PubMed  Google Scholar 

  20. Qin C, Bai L, Li Y, Wang K (2022) The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer’s disease: crosstalk between autophagy and apoptosis. Stem Cell Res Ther 13:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Menshikov M, Zubkova E, Stafeev I, Parfyonova Y (2021) Autophagy, mesenchymal stem cell differentiation, and secretion. Biomedicines 9:1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He J, Liu J, Huang Y, Tang X, Xiao H, Hu Z (2021) Oxidative stress, inflammation, and autophagy: potential targets of mesenchymal stem cells-based therapies in ischemic stroke. Front Neurosci 15:641157

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deng J, Zhong L, Zhou Z, Gu C, Huang X, Shen L, Cao S, Ren Z, Zuo Z, Deng J, Yu S (2021) Autophagy: a promising therapeutic target for improving mesenchymal stem cell biological functions. Mol Cell Biochem 476:1135–1149

    Article  CAS  PubMed  Google Scholar 

  24. Denton D, Xu T, Kumar S (2015) Autophagy as a pro-death pathway. Immunol Cell Biol 93:35–42

    Article  CAS  PubMed  Google Scholar 

  25. Kim KH, Lee MS (2014) Autophagy–a key player in cellular and body metabolism. Nat Rev Endocrinol 10:322–337

    Article  CAS  PubMed  Google Scholar 

  26. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41

    Article  CAS  PubMed  Google Scholar 

  27. Wong AS, Cheung ZH, Ip NY (2011) Molecular machinery of macroautophagy and its deregulation in diseases. Biochim Biophys Acta 1812:1490–1497

    Article  CAS  PubMed  Google Scholar 

  28. Li WW, Li J, Bao JK (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69:1125–1136

    Article  CAS  PubMed  Google Scholar 

  29. Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21:142–150

    Article  CAS  PubMed  Google Scholar 

  30. Rubinsztein DC, Mariño G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    Article  CAS  PubMed  Google Scholar 

  31. Nuschke A, Rodrigues M, Stolz DB, Chu CT, Griffith L, Wells A (2014) Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Res Ther 5:140

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chang TC, Hsu MF, Wu KK (2015) High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS ONE 10:e0126537

    Article  PubMed  PubMed Central  Google Scholar 

  33. Capasso S, Alessio N, Squillaro T, Di Bernardo G, Melone MA, Cipollaro M, Peluso G, Galderisi U (2015) Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells. Oncotarget 6:39457–39468

    Article  PubMed  PubMed Central  Google Scholar 

  34. Molaei S, Roudkenar MH, Amiri F, Harati MD, Bahadori M, Jaleh F, Jalili MA, Mohammadi RA (2015) Down-regulation of the autophagy gene, ATG7, protects bone marrow-derived mesenchymal stem cells from stressful conditions. Blood Res 50:80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sbrana FV, Cortini M, Avnet S, Perut F, Columbaro M, De Milito A, Baldini N (2016) The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev Rep. 12:621–633

    Article  CAS  PubMed  Google Scholar 

  36. Xiang X, Zhao J, Xu G, Li Y, Zhang W (2011) mTOR and the differentiation of mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 43:501–510

    Article  CAS  Google Scholar 

  37. Dong W, Zhang P, Fu Y, Ge J, Cheng J, Yuan H, Jiang H (2015) Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells. J Cell Physiol 230:680–690

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Fan J, Lin YS, Guo YS, Gao B, Shi QY, Wei BY, Chen L, Yang L, Liu J, Luo ZJ (2015) Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells. Mol Med Rep 11:2711–2716

    Article  CAS  PubMed  Google Scholar 

  39. Whittier X, Saag KG (2016) Glucocorticoid-induced Osteoporosis. Rheum Dis Clin North Am 42:177–189

    Article  PubMed  Google Scholar 

  40. Park S, Choi Y, Jung N, Kim J, Oh S, Yu Y, Ahn JH, Jo I, Choi BO, Jung SC (2017) Autophagy induction in the skeletal myogenic differentiation of human tonsil-derived mesenchymal stem cells. Int J Mol Med 39:831–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Russo FP, Parola M (2012) Stem cells in liver failure. Best Pract Res Clin Gastroenterol 26:35–45

    Article  CAS  PubMed  Google Scholar 

  42. Ugland H, Naderi S, Brech A, Collas P, Blomhoff HK (2011) cAMP induces autophagy via a novel pathway involving ERK, cyclin E and Beclin 1. Autophagy 7:1199–1211

    Article  CAS  PubMed  Google Scholar 

  43. Park M, Kim YH, Woo SY, Lee HJ, Yu Y, Kim HS, Park YS, Jo I, Park JW, Jung SC, Lee H, Jeong B, Ryu KH (2015) Tonsil-derived mesenchymal stem cells ameliorate CCl4-induced liver fibrosis in mice via autophagy activation. Sci Rep 5:8616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanchez CG, Penfornis P, Oskowitz AZ, Boonjindasup AG, Cai DZ, Dhule SS, Rowan BG, Kelekar A, Krause DS, Pochampally RR (2011) Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis 32:964–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K, Hao C, Meng Y, Yu FH, Liu XQ, Shi YF, Wu MC, Zhang L, Wei LX (2013) Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis 4:e844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu GY, Jiang XX, Zhu X, He WY, Kuang YL, Ren K, Lin Y, Gou X (2015) ROS activates JNK-mediated autophagy to counteract apoptosis in mouse mesenchymal stem cells in vitro. Acta Pharmacol Sin 36:1473–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo S, Rubinsztein DC (2007) Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ 14:1247–1250

    Article  CAS  PubMed  Google Scholar 

  48. Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, Kroemer G (2007) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3:374–376

    Article  CAS  PubMed  Google Scholar 

  49. Levin-Salomon V, Bialik S, Kimchi A (2014) DAP-kinase and autophagy. Apoptosis 19:346–356

    Article  CAS  PubMed  Google Scholar 

  50. Miao C, Lei M, Hu W, Han S, Wang Q (2017) A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther 8:242

    Article  PubMed  PubMed Central  Google Scholar 

  51. El Nashar EM, Alghamdi MA, Alasmari WA, Hussein MMA, Hamza E, Taha RI, Ahmed MM, Al-Khater KM, Abdelfattah-Hassan A (2021) Autophagy promotes the survival of adipose mesenchymal stem/stromal cells and enhances their therapeutic effects in cisplatin-induced liver injury via modulating TGF-β1/Smad and PI3K/AKT signaling pathways. Cells 10:2475

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wu DJ, Adamopoulos IE (2017) Autophagy and autoimmunity. Clin Immunol 176:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Terman A, Brunk UT (2005) Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res 68:355–365

    Article  CAS  PubMed  Google Scholar 

  54. Yin XM, Ding WX, Gao W (2008) Autophagy in the liver. Hepatology 47:1773–1785

    Article  CAS  PubMed  Google Scholar 

  55. Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO, Morse D (2012) Autophagy in idiopathic pulmonary fibrosis. PLoS ONE 7:1–9

    Article  Google Scholar 

  56. Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14:161–176

    Article  CAS  PubMed  Google Scholar 

  57. Shin JY, Park HJ, Kim HN, Oh SH, Bae JS, Ha HJ, Lee PH (2014) Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 10:32–44

    Google Scholar 

  58. Gergely P Jr, Grossman C, Niland B, Puskas F, Neupane H, Allam F, Banki K, Phillips PE, Perl A (2002) Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum 46:175–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Caza TN, Fernandez DR, Talaber G, Oaks Z, Haas M, Madaio MP, Lai ZW, Miklossy G, Singh RR, Chudakov DM, Malorni W, Middleton F, Banki K, Perl A (2014) HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann Rheum Dis 73:1888–1897

    Article  CAS  PubMed  Google Scholar 

  60. Martinez J, Cunha LD, Park S, Yang M, Lu Q, Orchard R, Li QZ, Yan M, Janke L, Guy C, Linkermann A, Virgin HW, Green DR (2016) Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goswami TK, Singh M, Dhawan M, Mitra S, Emran TB, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K (2022) Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders-advances and challenges. Hum Vaccin Immunother 18:2035117

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen J, Wang Q, Feng X, Zhang Z, Geng L, Xu T, Wang D, Sun L (2016) Umbilical cord-derived mesenchymal stem cells suppress autophagy of T cells in patients with systemic lupus erythematosus via transfer of mitochondria. Stem Cells Int 2016:4062789

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhao K, Hao H, Liu J, Tong C, Cheng Y, Xie Z, Zang L, Mu Y, Han W (2015) Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy. Cell Death Dis 17(6):e1885

    Article  Google Scholar 

  64. Ye G, Wang P, Xie Z, Cao Q, Li J, Zheng G, Wang S, Li M, Liu W, Cen S, Li Z, Yu W, Wu Y, Shen H (2021) Autophagy-mediated activation of mucosal-associated invariant T cells driven by mesenchymal stem cell-derived IL-15. Stem Cell Rep 16:926–939

    Article  CAS  Google Scholar 

  65. Gao L, Cen S, Wang P, Xie Z, Liu Z, Deng W, Su H, Wu X, Wang S, Li J, Ouyang Y, Wu Y, Shen H (2016) Autophagy improves the immunosuppression of CD4+T cells by mesenchymal stem cells through transforming growth Factor-β1. Stem Cells Transl Med 5:1496–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Volarevic V, Gazdic M, Simovic Markovic B, Jovicic N, Djonov V, Arsenijevic N (2017) Mesenchymal stem cell-derived factors: immuno-modulatory effects and therapeutic potential. BioFactors 43:633–644

    Article  CAS  PubMed  Google Scholar 

  67. Kim KW, Moon SJ, Park MJ, Kim BM, Kim EK, Lee SH, Lee EJ, Chung BH, Yang CW, Cho ML (2015) Optimization of adipose tissue-derived mesenchymal stem cells by rapamycin in a murine model of acute graft-versus-host disease. Stem Cell Res Ther 6:202

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dang S, Xu H, Xu C, Cai W, Li Q, Cheng Y, Jin M, Wang RX, Peng Y, Zhang Y, Wu C, He X, Wan B, Zhang Y (2014) Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy 10:1301–1315

    Article  PubMed  PubMed Central  Google Scholar 

  69. Amiri F, Molaei S, Bahadori M, Nasiri F, Deyhim MR, Jalili MA, Nourani MR, Habibi RM (2016) Autophagy-modulated human bone marrow-derived mesenchymal stem cells accelerate liver restoration in mouse models of acute liver failure. Iran Biomed J 20:135–144

    PubMed  PubMed Central  Google Scholar 

  70. Joshi J, Kothapalli CR (2022) Role of inflammatory niche and adult cardiomyocyte coculture on differentiation, matrix synthesis, and secretome release by human bone marrow mesenchymal stem cells. Appl Biochem Biotechnol 194:1938–1954

    Article  CAS  PubMed  Google Scholar 

  71. Hare JM (2009) Translational development of mesenchymal stem cell therapy for cardiovascular diseases. Tex Heart Inst J 36:145–147

    PubMed  PubMed Central  Google Scholar 

  72. Wei W, An Y, An Y, Fei D, Wang Q (2018) Activation of autophagy in periodontal ligament mesenchymal stem cells promotes angiogenesis in periodontitis. J Periodontol 89:718–727

    Article  CAS  PubMed  Google Scholar 

  73. Liu J, Hao H, Huang H, Tong C, Ti D, Dong L, Chen D, Zhao Y, Liu H, Han W, Fu X (2015) Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy. Int J Low Extrem Wounds 14:63–72

    Article  CAS  PubMed  Google Scholar 

  74. Boyette LB, Creasey OA, Guzik L, Lozito T, Tuan RS (2014) Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med 3:241–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xia Y, Ling X, Hu G, Zhu Q, Zhang J, Li Q, Zhao B, Wang Y, Deng Z (2020) Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke. Stem Cell Res Ther 11:313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Volarevic .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

All authors declare they have no conflict of interest.

Compliance with Ethical Standards

This article does not contain any studies with human participants and animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrell, C.R., Pavlovic, D., Volarevic, V. (2023). Autophagy in Mesenchymal Stem Cell-Based Therapy. In: Shravage, B.V., Turksen, K. (eds) Autophagy in Stem Cell Maintenance and Differentiation. Stem Cell Biology and Regenerative Medicine, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-031-17362-2_9

Download citation

Publish with us

Policies and ethics