Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 224 Accesses

Abstract

Nanotechnology and nanomaterials are beginning to have an impact on the bioforensic science, regarding handling of evidence at crime scenes, its analysis in the laboratory and its presentation in the courtroom. Many different nanomaterials are used for processing of the samples, as DNA, gun powder residues, body fluids etc. Nevertheless, nanopowders, especially luminescent, are the most important for the fingerprinting method. The application of each nanomaterial in the forensic examination depends on its structure and properties, which can successfully be determined by applying fractal nature analysis, as an excellent method for micro and nanomaterials characterization. In our research we successfully synthesized photoluminescent Bi, Y and Ag zeoliteLTA topology nanopowders, which could be used for taking fingerprints from different materials, and therefore, they should be well characterized by fractal analysis. This article aims to highlight some of the major advances in forensic science brought about by nanomaterials fractal characterization, but is not exhaustive of the subject matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nanotechnology and human health:Scientific evidance and risk governance. Report of the WHO expert meeting 10–11 December 2012, Bonn, Germany, Copenhagen, WHO Regional Office for Europe (2013)

    Google Scholar 

  2. Matovic, B., Boškovic, S.: Terminologija nanomaterijala i nanotehnologije. Metalurgija 13, 155–157 (2007)

    Google Scholar 

  3. Smith, W.C., Kinney, R.W., De Partee, D.G.: The report of the International Assotiation for Identification. Standardization II Committee. J. Forensic Identification 43, 563–570 (1993)

    Google Scholar 

  4. Seah, L.K., Dinish, U.S., Phang, W.F., Chao, Z.X., Murukeshan, V.M.: Fluorescence optimization and lifetime studies of fingerprints treated with magnetic powders. Forensic Sci. Inter. 152, 249 (2005)

    Article  CAS  Google Scholar 

  5. Saferstein, R., Graf, S.L.: Evaluation of a reflected ultraviolet imaging system for fingerprint detection. JFI 51, 385–393 (2001)

    Google Scholar 

  6. Radosavljevic-Mihajlovic, A., Vulic, P., Matovic, B., Devecerski, A.: Synthesis of sillenite-type compounds from zeolite precursors: XRPD and SEM/EDS analyses. J. Optoelectron. Adv. Mater. 10, 887–890 (2008)

    CAS  Google Scholar 

  7. Cosimo, P., Laurent, G., Quenum-Possy-Berry, F.-G., Clemence, A., Th, N., Thomas, C.: Lumicyano: A new fluorescent cyanoacrylate for a one-step luminescent latent fingermark development. Forensic Sci. Int. 233, 104–112 (2013)

    Google Scholar 

  8. Breck, D.W.: Zeolite Molecular Sieves Structure, Chemistry and Use. J. Wiley & Sons, New York (1974)

    Google Scholar 

  9. Barrer, R.M.: Zeolites and Clay Minerals as Sorbent and Molecular Sieves. Acedem. Press, New York (1978)

    Google Scholar 

  10. Betekhtine, A.G.: Manuel de mineralogie descriptive. Editions MIR, Moscou (1966)

    Google Scholar 

  11. Baerlocher, Ch., Meier, W.M., Olson, D.H.: Atlas of zeolite framework types. Structure Commission of International zeolite Association, Elsevier, Amsterdam (2001)

    Google Scholar 

  12. Rakic, V.M., Hercigonja, R.V., Dondur, V.T.: CO interaction with zeolites studied by TPD and FTIR: transition-metal ion-exchanged FAU-type zeolites. Microporous Mesoporous Mater. 27, 27–39 (1999)

    Article  CAS  Google Scholar 

  13. Dondur, V.T., Rakic, V.M., Damjanovic, L., Hercigonja, R., Auroux, A.: Temperature-programmed desorption of n-hexane from hydrated HZSM-5 and NH4ZSM-5 zeolites. J. Ther. Anal. Calorimet. 84, 233–238 (2006)

    Article  CAS  Google Scholar 

  14. Rakic, V.M., Dondur, V.T., Hercigonja, R.V.: Thermal effects of the interactions of carbon monoxide with zeolites. Thermochim. Acta 379, 77–84 (2001)

    Article  CAS  Google Scholar 

  15. https://www.ncjrs.gov/pdffiles1/nij/225320.pdf

  16. Abraham, J., Champod, C., Lennard, C., Roux, C.: Modern statistical models for forensic fingerprint examinations A critical review. Forensic Sci. Int. 232, 131–150 (2013)

    Article  Google Scholar 

  17. http://www.police-scientifique.com/dossier-scheffer

  18. Margot, P., Lennard, C.: Fingerprint Detection Techniques, 6th edn. University of Lausanne, Lausanne, Institut de Police Scientifique et de Criminologie (1994)

    Google Scholar 

  19. Lee, H.C., Gaensslen, R.E.: Advances in Fingerprint Technology, 2nd ed., CRC Press (2001)

    Google Scholar 

  20. Jones, N., Stoilovic, M., Lennard, C.J., Roux, C.: Vacuum metal deposition: factors affecting normal and reverse development of latent fingerprints on polyethylene substrates. Forensic Sci. Int. 115, 73–88 (2001)

    Article  CAS  Google Scholar 

  21. Schnetz, B., Margot, P.: Technical note: latent fingermarks, colloidal gold and multimetal deposition (MMD) optimisation of the method. Forensic Sci. Int. 118, 21–28 (2001)

    Article  CAS  Google Scholar 

  22. Pounds, C.A., Grigg, R., Mongkolaussavaratana, T.: The use of 1,8-diazafluoren- 9-one (DFO) for the fluorescent detection of latent fingerprints on paper: a preliminary evaluation. J. Forensic Sci. 35, 169–175 (1990)

    Article  CAS  Google Scholar 

  23. Mandelbrot, B.: Fractals and the Geometry of Nature. Freeman, San Francisco (1982)

    Google Scholar 

  24. Mitic, V.V., Kocic, L., Paunovic, V., Lazovic, G., Miljkovic, M.: Fractal nature structure reconstruction method in designing microstructure properties. Mater. Res. Bull. 101, 175–183 (2018). https://doi.org/10.1016/j.materresbull.2018.01.019

    Article  CAS  Google Scholar 

  25. Mitic, V.V., Kocic, L., Paunovic, V., Bastic, F., Sirmic, D.: The fractal nature materials microstructure influence on electrochemical energy sources. Sci. Sinter. 47, 195–204 (2015)

    Article  CAS  Google Scholar 

  26. Radev, S.F., Simonov, V.I.: Structures of sillenites and atomic mechanisms of their isomorphic substitutions. Sov. Phys. Crystallogr. 37, 484 (1992)

    Google Scholar 

  27. Dos Santos, T.O., Carvalho, J.F., Hernandes, A.C.: Synthesis and cristal growth of sillenite phase in the Bi2O3-TiO2-Nb2O5 system. Cryst. Res. Technol. 39, 868–872 (2004)

    Article  Google Scholar 

  28. Neov, S., Marinova, V., Reehuis, M., Sonntag, R.: Neutron-diffraction study of Bi2 M O20 single crystals with sillenite structure (M = Si, Si0.995 Mn0.005, Bi0.53 Mn0.47). Appl. Phys. A 74, 1016–1018 (2002)

    Google Scholar 

  29. Murata, K., Fujimoto, Y., Kanabe, T., Fujita, H., Nakatsuka, M.: Bi-doped SiO2 as a new laser material for an intense laser. Fusion Eng. 44, 437–439 (1999)

    Article  CAS  Google Scholar 

  30. Fujimoto, Y., Nakatsuka, M.: Infrared luminescence from Bismuth-doped silica glass. Jpn. J. Appl. Phys. 40, 279–281 (2001)

    Article  Google Scholar 

  31. Menzel, E.R., Menzel, L.W., Schwierking, J.R.: Talanta 67, 383 (2005)

    Article  CAS  Google Scholar 

  32. Mitic, V.V., Lazovic, G., Radosavljevic-Mihajlovic, A.S., Milosevic, D., Markovic, B., Simeunovic, D., Vlahovic, B.: Forensic science and fractal nature analysis. Mod. Phys. Lett. B 35 (2021). S0217984921504935

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2022-14/200023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Radosavljević-Mihajlović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radosavljević-Mihajlović, A., Mitić, V.V., Marković, B., Simeunović, D. (2023). The Nanomaterials Fractal Characterization and Bioforensic Science. In: Najman, S., et al. Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-17269-4_14

Download citation

Publish with us

Policies and ethics