Skip to main content

Deep Learning Framework for Real-Time Fetal Brain Segmentation in MRI

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13575))

Abstract

Fetal brain segmentation is an important first step for slice-level motion correction and slice-to-volume reconstruction in fetal MRI. Fast and accurate segmentation of the fetal brain on fetal MRI is required to achieve real-time fetal head pose estimation and motion tracking for slice re-acquisition and steering. To address this critical unmet need, in this work we analyzed the speed-accuracy performance of a variety of deep neural network models, and devised a symbolically small convolutional neural network that combines spatial details at high resolution with context features extracted at lower resolutions. We used multiple branches with skip connections to maintain high accuracy while devising a parallel combination of convolution and pooling operations as an input downsampling module to further reduce inference time. We trained our model as well as eight alternative, state-of-the-art networks with manually-labeled fetal brain MRI slices and tested on two sets of normal and challenging test cases. Experimental results show that our network achieved the highest accuracy and lowest inference time among all of the compared state-of-the-art real-time segmentation methods. We achieved average Dice scores of 97.99% and 84.04% on the normal and challenging test sets, respectively, with an inference time of 3.36 milliseconds per image on an NVIDIA GeForce RTX 2080 Ti. Code, data, and the trained models are available at this repo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anquez, J., Angelini, E.D., Bloch, I.: Automatic segmentation of head structures on fetal MRI. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 109–112. IEEE (2009)

    Google Scholar 

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Ebner, M., et al.: An automated localization, segmentation and reconstruction framework for fetal brain MRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 313–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_36

    Chapter  Google Scholar 

  4. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. Neuroimage 206, 116324 (2020)

    Article  Google Scholar 

  5. Gamal, M., Siam, M., Abdel-Razek, M.: ShuffleSeg: real-time semantic segmentation network. arXiv preprint arXiv:1803.03816 (2018)

  6. Gholipour, A., Estroff, J.A., Warfield, S.K.: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans. Med. Imaging 29(10), 1739–1758 (2010)

    Article  Google Scholar 

  7. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  8. Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)

    Article  Google Scholar 

  9. Keraudren, K., et al.: Automated fetal brain segmentation from 2D MRI slices for motion correction. Neuroimage 101, 633–643 (2014)

    Article  Google Scholar 

  10. Khalili, N., et al.: Automatic segmentation of the intracranial volume in fetal MR images. In: Cardoso, M.J., et al. (eds.) FIFI/OMIA -2017. LNCS, vol. 10554, pp. 42–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67561-9_5

    Chapter  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)

    Article  Google Scholar 

  13. Li, H., Xiong, P., Fan, H., Sun, J.: DFANet: deep feature aggregation for real-time semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9522–9531 (2019)

    Google Scholar 

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  15. Lu, G., Zhang, W., Wang, Z.: Optimizing depthwise separable convolution operations on GPUs. IEEE Trans. Parallel Distrib. Syst. 33(1), 70–87 (2021)

    Article  Google Scholar 

  16. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  17. Papadeas, I., Tsochatzidis, L., Amanatiadis, A., Pratikakis, I.: Real-time semantic image segmentation with deep learning for autonomous driving: a survey. Appl. Sci. 11(19), 8802 (2021)

    Article  Google Scholar 

  18. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)

  19. Poudel, R.P., Bonde, U., Liwicki, S., Zach, C.: ContextNet: exploring context and detail for semantic segmentation in real-time. arXiv preprint arXiv:1805.04554 (2018)

  20. Poudel, R.P., Liwicki, S., Cipolla, R.: Fast-SCNN: fast semantic segmentation network. In: British Machine Vision Conference (2019)

    Google Scholar 

  21. Rampun, A., Jarvis, D., Griffiths, P., Armitage, P.: Automated 2D fetal brain segmentation of MR images using a deep U-Net. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12047, pp. 373–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41299-9_29

    Chapter  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Auto-context convolutional neural network (auto-net) for brain extraction in magnetic resonance imaging. IEEE Trans. Med. Imaging 36(11), 2319–2330 (2017)

    Article  Google Scholar 

  24. Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 720–724. IEEE (2018)

    Google Scholar 

  25. Salehi, S.S.M., Khan, S., Erdogmus, D., Gholipour, A.: Real-time deep pose estimation with geodesic loss for image-to-template rigid registration. IEEE Trans. Med. Imaging 38(2), 470–481 (2018)

    Article  Google Scholar 

  26. Uus, A., et al.: Deformable slice-to-volume registration for motion correction of fetal body and placenta MRI. IEEE Trans. Med. Imaging 39(9), 2750–2759 (2020)

    Article  Google Scholar 

  27. Wang, G., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T., Zhang, S.: Uncertainty-guided efficient interactive refinement of fetal brain segmentation from stacks of MRI slices. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 279–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_28

    Chapter  Google Scholar 

  28. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

  29. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20

    Chapter  Google Scholar 

  30. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  31. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 418–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_25

    Chapter  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Institutes of Health (NIH) under award numbers R01EB031849, R01NS106030, and R01EB032366; and in part by the Office of the Director of the NIH under award number S10OD0250111. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Faghihpirayesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faghihpirayesh, R., Karimi, D., Erdoğmuş, D., Gholipour, A. (2022). Deep Learning Framework for Real-Time Fetal Brain Segmentation in MRI. In: Licandro, R., Melbourne, A., Abaci Turk, E., Macgowan, C., Hutter, J. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2022. Lecture Notes in Computer Science, vol 13575. Springer, Cham. https://doi.org/10.1007/978-3-031-17117-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17117-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17116-1

  • Online ISBN: 978-3-031-17117-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics