Skip to main content

Deep Learning Automatic Fetal Structures Segmentation in MRI Scans with Few Annotated Datasets

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

We present a new method for end-to-end automatic volumetric segmentation of fetal structures in MRI scans with deep learning networks trained with very few annotated scans. It consists of three main stages: 1) two-step automatic structure segmentation with custom 3D U-Nets; 2) segmentation error estimation, and; 3) segmentation error correction. The automatic structure segmentation stage first computes a region of interest (ROI) on a downscaled scan and then computes a final segmentation on the cropped ROI. The segmentation error estimation stage uses prediction-time augmentations of the input scan to compute multiple segmentations and estimate the segmentation uncertainty for individual slices and for the entire scan. The segmentation error correction stage then uses these estimations to locate the most error-prone slices and to correct the segmentations in those slices based on validated adjacent slices. Experimental results of our methods on fetal body (63 cases, 9 for training, 55 for testing) and fetal brain MRI scans (35 cases, 6 for training, 29 for testing) yield a mean Dice coefficient of 0.96 for both, and a mean Average Symmetric Surface Distance of 0.74 mm and 0.19 mm, respectively, below the observer delineation variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Litjens, G., et al.: A survey of deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the 4th IEEE International Conference on 3D Vision (2016)

    Google Scholar 

  5. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25

    Chapter  Google Scholar 

  6. Karimi, D., Samei, G., Shao, Y., Salcudean, S.: A novel deep learning-based method for prostate segmentation in T2-weighted magnetic resonance imaging. arXiv:1901.09462 (2019)

  7. Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: Proceedings of the IEEE 15th International Symposium on Biomedical Imaging – ISBI 2018, pp. 720–724 (2018)

    Google Scholar 

  8. Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Progr. Biomed. 158, 113–122 (2018)

    Article  Google Scholar 

  9. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  10. Fetit, A.E., et al.: A deep learning approach to segmentation of the developing cortex in fetal brain MRI with minimal manual labeling. In: Medical Imaging with Deep Learning (2020)

    Google Scholar 

  11. Veeraraghavan, H., Miller, J.V.: Active learning guided interactions for consistent image segmentation with reduced user interactions. In: Proceedings of the IEEE International Symposium on Biomed Imaging (2011)

    Google Scholar 

  12. Lee, N., Caban, J., Ebadollahi, S., Laine, A.: Interactive segmentation in multimodal medical imagery using a Bayesian transductive learning approach. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (2009)

    Google Scholar 

  13. Wang, G., Li, W.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37, 1562–1573 (2018)

    Article  Google Scholar 

  14. Braginsky, M., Joskowicz, L.: Interactive segmentation of structures with real-time fine-tuning of a fully convolutional neural network. M.Sc. thesis, The Hebrew University of Jerusalem (2019)

    Google Scholar 

  15. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  16. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70 (2017)

    Google Scholar 

  17. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

  18. Loquercio, A., Segu, M., Scaramuzza, D.: A general framework for uncertainty estimation in Deep Learning. arXiv preprint arXiv:1907.06890 (2019)

  19. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  20. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  21. Tompson, J., Goroshin, R., Jain, A., Lecun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  22. Lin, H., et al.: Deep learning for low-field to high-field MR: image quality transfer with probabilistic decimation simulator. In: Knoll, F., Maier, A., Rueckert, D., Ye, J.C. (eds.) MLMIR 2019. LNCS, vol. 11905, pp. 58–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33843-5_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Joskowicz .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (M4V 220 kb)

Supplementary material 2 (M4V 234 kb)

Supplementary material 3 (PDF 16019 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dudovitch, G., Link-Sourani, D., Ben Sira, L., Miller, E., Ben Bashat, D., Joskowicz, L. (2020). Deep Learning Automatic Fetal Structures Segmentation in MRI Scans with Few Annotated Datasets. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics