Skip to main content

Minimum Weight Euclidean \((1+\varepsilon )\)-Spanners

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13453))

Included in the following conference series:

  • 431 Accesses

Abstract

Given a set S of n points in the plane and a parameter \(\varepsilon >0\), a Euclidean \((1\,+\,\varepsilon )\)-spanner is a geometric graph \(G=(S,E)\) that contains a path of weight at most \((1+\varepsilon )\Vert pq\Vert _2\) for all \(p,q\in S\). We show that the minimum weight of a Euclidean \((1+\varepsilon )\)-spanner for n points in the unit square \([0,1]^2\) is \(O(\varepsilon ^{-3/2}\,\sqrt{n})\), and this bound is the best possible. The upper bound is based on a new spanner algorithm that sparsifies Yao-graphs. It improves upon the baseline \(O(\varepsilon ^{-2}\sqrt{n})\), obtained by combining a tight bound for the weight of an MST and a tight bound for the lightness of Euclidean \((1+\varepsilon )\)-spanners, which is the ratio of the spanner weight to the weight of the MST. The result generalizes to d-space for all \(d\in \mathbb {N}\): The minimum weight of a Euclidean \((1\,+\,\varepsilon )\)-spanner for n points in the unit cube \([0,1]^d\) is \(O_d(\varepsilon ^{(1-d^2)/d}n^{(d-1)/d})\), and this bound is the best possible. For the \(n\times n\) section of the integer lattice, we show that the minimum weight of a Euclidean \((1+\varepsilon )\)-spanner is between \(\varOmega (\varepsilon ^{-3/4}n^2)\) and \(O(\varepsilon ^{-1}\log (\varepsilon ^{-1})\, n^2)\). These bounds become \(\varOmega (\varepsilon ^{-3/4}\sqrt{n})\) and \(O(\varepsilon ^{-1}\log (\varepsilon ^{-1})\sqrt{n})\) when scaled to a grid of n points in \([0,1]^2\).

Research partially supported by NSF grant DMS-1800734.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Affash, A.K., Bar-On, G., Carmi, P.: \(\delta \)-greedy \(t\)-spanner. Comput. Geom. 100, 101807 (2022). https://doi.org/10.1016/j.comgeo.2021.101807

  2. Agarwal, P.K.: Range searching. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, chap. 40, 3 edn., pp. 1057–1092. CRC Press, Boca Raton (2017)

    Google Scholar 

  3. Agarwal, P.K., Wang, Y., Yin, P.: Lower bound for sparse Euclidean spanners. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 670–671 (2005). https://dl.acm.org/citation.cfm?id=1070432.1070525

  4. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993). https://doi.org/10.1007/BF02189308

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhore, S., Tóth, C.D.: Light euclidean steiner spanners in the plane. In: Proceedings of the 37th Annual Symposium on Computational Geometry (SoCG). LIPIcs, vol. 189, pp. 15:1–15:17. Schloss Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.SoCG.2021.15

  6. Borradaile, G., Le, H., Wulff-Nilsen, C.: Greedy spanners are optimal in doubling metrics. In: Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2371–2379 (2019). https://doi.org/10.1137/1.9781611975482.145

  7. Buchin, K., Har-Peled, S., Oláh, D.: A spanner for the day after. Discrete Comput. Geom. 64(4), 1167–1191 (2020). https://doi.org/10.1007/s00454-020-00228-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T.M., Har-Peled, S., Jones, M.: On locality-sensitive orderings and their applications. SIAM J. Comput. 49(3), 583–600 (2020). https://doi.org/10.1137/19M1246493

    Article  MathSciNet  MATH  Google Scholar 

  9. Das, G., Heffernan, P.J., Narasimhan, G.: Optimally sparse spanners in 3-dimensional euclidean space. In: Proceedings of the 9th Symposium on Computational Geometry (SoCG), pp. 53–62 (1993). https://doi.org/10.1145/160985.160998

  10. Das, G., Narasimhan, G., Salowe, J.S.: A new way to weigh malnourished euclidean graphs. In: Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 215–222 (1995). https://dl.acm.org/citation.cfm?id=313651.313697

  11. Dinitz, Y., Elkin, M., Solomon, S.: Low-light trees, and tight lower bounds for euclidean spanners. Discrete Comput. Geom. 43(4), 736–783 (2009). https://doi.org/10.1007/s00454-009-9230-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Dress, F.: Discrépance des suites de farey. J. Théor. Nombres Bordeaux 11(2), 345–367 (1999)

    Article  MathSciNet  Google Scholar 

  13. Elkin, M., Solomon, S.: Optimal euclidean spanners: really short, thin, and lanky. J. ACM 62(5), 1–45 (2015). https://doi.org/10.1145/2819008

    Article  MathSciNet  MATH  Google Scholar 

  14. Few, L.: The shortest path and the shortest road through \(n\) points. Mathematika 2(2), 141–144 (1955). https://doi.org/10.1112/S0025579300000784

    Article  MathSciNet  MATH  Google Scholar 

  15. Filtser, A., Solomon, S.: The greedy spanner is existentially optimal. SIAM J. Comput. 49(2), 429–447 (2020). https://doi.org/10.1137/18M1210678

    Article  MathSciNet  MATH  Google Scholar 

  16. Franel, J.: Les suites de farey et les problemes des nombres premiers. Gottinger Nachr. 1924, 198–201 (1924)

    MATH  Google Scholar 

  17. Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. Comput. Geom. 35(1–2), 2–19 (2006). https://doi.org/10.1016/j.comgeo.2005.10.001

    Article  MathSciNet  MATH  Google Scholar 

  18. Gottlieb, L.: A light metric spanner. In: Proceedings of the 56th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 759–772 (2015). https://doi.org/10.1109/FOCS.2015.52

  19. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002). https://doi.org/10.1137/S0097539700382947

    Article  MathSciNet  MATH  Google Scholar 

  20. Har-Peled, S.: Geometric Approximation Algorithms. Mathematics Surveys and Monographs, vol. 173. AMS (2011)

    Google Scholar 

  21. Kargaev, P., Zhigljavsky, A.: Approximation of real numbers by rationals: some metric theorems. J. Number Theor. 61, 209–225 (1996). https://doi.org/10.1006/jnth.1996.0145

    Article  MathSciNet  MATH  Google Scholar 

  22. Landau, E.: Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel. Göttinger Nachr. 8, 202–206 (1924). Coll. works, (Thales Verlag, Essen)

    Google Scholar 

  23. Le, H., Solomon, S.: Truly optimal Euclidean spanners. In: Proceedings of the 60th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 1078–1100. IEEE Computer Society (2019). https://doi.org/10.1109/FOCS.2019.00069

  24. Le, H., Solomon, S.: Light euclidean spanners with steiner points. In: Proceedins of the 28th European Symposium on Algorithms (ESA). LIPIcs, vol. 173, pp. 67:1–67:22. Schloss Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.67

  25. Le, H., Solomon, S.: Towards a unified theory of light spanners I: fast (yet optimal) constructions. CoRR abs/2106.15596 (2021). https://arxiv.org/abs/2106.15596

  26. Ledoan, A.H.: The discrepancy of farey series. Acta Math. Hungar. 156(2), 465–480 (2018). https://doi.org/10.1007/s10474-018-0868-x

    Article  MathSciNet  MATH  Google Scholar 

  27. Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32(1), 144–156 (2002). https://doi.org/10.1007/s00453-001-0075-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511546884

    Book  MATH  Google Scholar 

  29. Rao, S., Smith, W.D.: Approximating geometrical graphs via “spanners” and “banyans”. In: Proceedings of the 30th Annual ACM Symposium on the Theory of Computing (STOC), pp. 540–550 (1998). https://doi.org/10.1145/276698.276868

  30. Roditty, L.: Fully dynamic geometric spanners. Algorithmica 62(3–4), 1073–1087 (2012). https://doi.org/10.1007/s00453-011-9504-7

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruppert, J., Seidel, R.: Approximating the \(d\)-dimensional complete euclidean graph. In: Proceedings of the 3rd Canadian Conference on Computational Geometry (CCCG), pp. 207–210 (1991). https://cccg.ca/proceedings/1991/paper50.pdf

  32. Solomon, S., Elkin, M.: Balancing degree, diameter, and weight in euclidean spanners. SIAM J. Discret. Math. 28(3), 1173–1198 (2014). https://doi.org/10.1137/120901295

    Article  MathSciNet  MATH  Google Scholar 

  33. Steele, J.M., Snyder, T.L.: Worst-case growth rates of some classical problems of combinatorial optimization. SIAM J. Comput. 18(2), 278–287 (1989). https://doi.org/10.1137/0218019

    Article  MathSciNet  MATH  Google Scholar 

  34. Supowit, K.J., Reingold, E.M., Plaisted, D.A.: The travelling salesman problem and minimum matching in the unit square. SIAM J. Comput. 12(1), 144–156 (1983). https://doi.org/10.1137/0212009

    Article  MathSciNet  MATH  Google Scholar 

  35. Tóth, C.D.: Minimum weight euclidean \((1+\varepsilon )\)-spanners. CoRR abs/2206.14911 (2022). https://arxiv.org/abs/2206.14911

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba D. Tóth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tóth, C.D. (2022). Minimum Weight Euclidean \((1+\varepsilon )\)-Spanners. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics