Skip to main content
Log in

The discrepancy of Farey series

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We study the uniform distribution modulo one of the Farey series in an arbitrary subinterval of the closed unit interval [0, 1], whose fractions have denominators streaming in a given arithmetic progression, and we establish upper and lower bounds for the discrepancy of the Farey series. The distribution is closely related to the growth of the Mertens function and follows from a concise formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkan, E., Ledoan, A.H., Vâjâitu, M., Zaharescu, A.: Discrepancy of fractions with divisibility constraints. Monatsh. Math. 149, 265–276 (2006)

    Article  MathSciNet  Google Scholar 

  2. Alkan, E., Ledoan, A.H., Vâjâitu, M., Zaharescu, A.: Discrepancy of sets of fractions with congruence constraints. Rev. Roumaine Math. Pures Appl. 51, 265–276 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Alkan, E., Ledoan, A.H., Vâjâitu, M., Zaharescu, A.: On the index of fractions with square-free denominators in arithmetic progressions. Ramanujan J. 16, 131–161 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bateman, P.T.: Sequences of mass distributions on the unit circle which tend to a uniform distribution. Amer. Math. Monthly 71, 165–172 (1964)

    Article  MathSciNet  Google Scholar 

  5. Cobeli, C., Zaharescu, A.: The Haros-Farey sequence at two hundred years. Acta Univ. Apilensis Math. Inform. 5, 1–38 (2003)

    MathSciNet  MATH  Google Scholar 

  6. H. Davenport, Multiplicative Number Theory, 3rd ed., Graduate Studies in Mathematics, Vol. 74, Springer-Verlag (New York, 2000)

  7. Dress, F.: Discrépance des suites de Farey. J. Théor. Nombres Bordeaux 11, 345–367 (1999)

    Article  MathSciNet  Google Scholar 

  8. Edwards, H.M.: Riemann's Zeta Function, Pure and Applied Mathematics, vol. 58. A Series of Monographs and Textbooks, Academic Press (New York, London (1974)

    Google Scholar 

  9. Erdős, P.: On the difference between consecutive terms of sequences defined by divisibility properties. Acta Arith. 12, 175–182 (1966)

    Article  MathSciNet  Google Scholar 

  10. Erdős, P., Kac, M., van Kampen, E.R., Wintner, A.: Ramanujan sums and almost periodic functions. Studia Math. 9, 43–53 (1940)

    Article  MathSciNet  Google Scholar 

  11. J. Franel, Les suites de Farey et les problèmes des nombres premiers, Nachr. von der Ges. der Wiss. zu Göttingen, Math.-Phys. Kl., (1924), 198–201

  12. Hall, R.R., Shiu, P.: The index of a Farey sequence. Michigan Math. J. 51, 209–223 (2003)

    Article  MathSciNet  Google Scholar 

  13. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford Univ. Press (Oxford, 1979)

  14. Huxley, M.N.: The distribution of Farey points. I, Acta Arith. 18, 281–287 (1971)

    Article  MathSciNet  Google Scholar 

  15. M. N. Huxley, The Distribution of Prime Numbers. Large Sieves and Zero Density Theorems, Oxford Mathematical Monographs, Oxford Univ. Press, Ely House (London, 1972)

  16. A. Ivić, The Riemann Zeta-Function. The Theory of the Riemann Zeta-Function with Applications, A Wiley-Interscience Publication, John Wiley & Sons (New York, 1985)

  17. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences, Pure and Applied Mathematics, John Wiley & Sons, Wiley-Interscience. London, Sydney, New York (1974)

    Google Scholar 

  18. E. Landau, Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel, Nachr. von der Ges. der Wiss. zu Göttingen, Math.-Phys. Kl., (1924), 202–206

  19. H. G. Meijer and H. Niederreiter, Équirépartition et théorie des nombres premiers, in: Répartition Modulo 1 (Actes Colloq., Marseille, Luminy, 1974); Lecture Notes in Math., Vol. 475, Springer (Berlin, 1975), 104–112

    Google Scholar 

  20. Neville, E.H.: The structure of Farey series. Proc. London Math. Soc. 51, 132–144 (1949)

    Article  MathSciNet  Google Scholar 

  21. Niederreiter, H.: The distribution of Farey points. Math. Ann. 201, 341–345 (1973)

    Article  MathSciNet  Google Scholar 

  22. Pólya, G., Szegő, G.: Problems and Theorems in Analysis I. Integral Calculus, Theory of Functions, Classics in Mathematics, Springer-Verlag (Berlin, Series (1998)

    Book  Google Scholar 

  23. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., The Clarendon Press, Oxford Univ. Press (New York, 1986)

Download references

Acknowledgement

The author express his sincere gratitude to Professor Alexandru Zaharescu for drawing this problem to his attention. He also wishes to convey his deep appreciation to the anonymous referee for carefully reading the original version of this paper and for making a number of very useful comments and suggestions which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Ledoan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledoan, A.H. The discrepancy of Farey series. Acta Math. Hungar. 156, 465–480 (2018). https://doi.org/10.1007/s10474-018-0868-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-018-0868-x

Key words and phrases

Mathematics Subject Classification

Navigation