Skip to main content

How to Assess Coherent Beliefs: A Comparison of Different Notions of Coherence in Dempster-Shafer Theory of Evidence

  • Chapter
  • First Online:
Reflections on the Foundations of Probability and Statistics

Part of the book series: Theory and Decision Library A: ((TDLA,volume 54))

Abstract

Stemming from de Finettiā€™s work on finitely additive coherent probabilities, the paradigm of coherence has been applied to many uncertainty calculi in order to remove structural restrictions on the domain of the assessment. Three possible approaches to coherence are available: coherence as a consistency notion, coherence as fair betting scheme, and coherence in terms of penalty criterion. Due to its intimate connection with (finitely additive) probability theory, Dempster-Shafer theory allows notions of coherence in all the forms recalled above, presenting evident similarities with probability theory. In this chapter we present a systematic study of such coherence notions showing their equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhaskara Rao, K.P.S., and M. Bhaskara Rao. 1983. Theory of charges: a study of finitely additive measures. Cambridge: Academic Press.

    Google ScholarĀ 

  • Brier, G.W. 1950. Verification of forecasts expressed in terms of probability. Monthly Weather Review 78(1):1ā€“3.

    ArticleĀ  Google ScholarĀ 

  • Capotorti, A., G. Coletti, B. Vantaggi. 2014. Standard and nonstandard representability of positive uncertainty orderings. Kybernetika 50(2):189ā€“215.

    Google ScholarĀ 

  • Capotorti, A., G. Regoli, and F. Vattari. 2010. Correction of incoherent conditional probability assessments. International Journal of Approximate Reasoning 51(6):718ā€“727.

    ArticleĀ  Google ScholarĀ 

  • Censor, Y., and S.A. Zenios. 1997. Parallel optimization: theory, algorithms and applications. Oxford: Oxford University Press.

    Google ScholarĀ 

  • Chateauneuf, A., and J.Y. Jaffray. 1989. Some characterizations of lower probabilities and other monotone capacities through the use of Mƶbius inversion. Mathematical Social Sciences 17(3):263ā€“283.

    ArticleĀ  Google ScholarĀ 

  • Choquet, G. 1953. Theory of capacities. Annales de lā€™Institut Fourier 5:131ā€“295.

    ArticleĀ  Google ScholarĀ 

  • Coletti, G., D. Petturiti, and B. Vantaggi. 2014. Bayesian inference: the role of coherence to deal with a prior belief function. Statistical Methods & Applications 23(4):519ā€“545.

    ArticleĀ  Google ScholarĀ 

  • Coletti, G., D. Petturiti, and B. Vantaggi. 2015. Rationality principles for preferences on belief functions. Kybernetika 51(3):486ā€“507.

    Google ScholarĀ 

  • Coletti, G., D. Petturiti, and B. Vantaggi. 2016. Conditional belief functions as lower envelopes of conditional probabilities in a finite setting. Information Sciences 339:64ā€“84.

    ArticleĀ  Google ScholarĀ 

  • Coletti, G., D. Petturiti, and B. Vantaggi. 2016. When upper conditional probabilities are conditional possibility measures. Fuzzy Sets and Systems 304:45ā€“64.

    ArticleĀ  Google ScholarĀ 

  • Coletti, G., D. Petturiti, and B. Vantaggi. 2019a. Dutch book rationality conditions for conditional preferences under ambiguity. Annals of Operations Research 279(1):115ā€“150.

    ArticleĀ  Google ScholarĀ 

  • Coletti, G., D. Petturiti, and B. Vantaggi. 2019b. Models for pessimistic or optimistic decisions under different uncertain scenarios. International Journal of Approximate Reasoning 105:305ā€“326.

    ArticleĀ  Google ScholarĀ 

  • Coletti, G., D. Petturiti, and B. Vantaggi. 2020. A Dutch book coherence condition for conditional completely alternating Choquet expectations. Bollettino dellā€™Unione Matematica Italiana 13(4):585ā€“593.

    ArticleĀ  Google ScholarĀ 

  • Coletti, G., and R. Scozzafava. 2002. Probabilistic logic in a coherent setting. In Trends in logic, vol. 15. Dordrecht: Kluwer Academic.

    Google ScholarĀ 

  • Coletti, G., and R. Scozzafava. 2006. Toward a general theory of conditional beliefs. International Journal of Intelligent Systems 21:229ā€“259.

    ArticleĀ  Google ScholarĀ 

  • Coletti, G., R. Scozzafava, and B. Vantaggi. 2013. Inferential processes leading to possibility and necessity. Information Sciences 245(1):132ā€“145.

    ArticleĀ  Google ScholarĀ 

  • Coletti, G., and B. Vantaggi. 2007. Comparative models ruled by possibility and necessity: a conditional world. International Journal of Approximate Reasoning 45(2):341ā€“363.

    ArticleĀ  Google ScholarĀ 

  • Coletti, G., and B. Vantaggi. 2008. A view on conditional measures through local representability of binary relations. International Journal of Approximate Reasoning 47(1):268ā€“283.

    ArticleĀ  Google ScholarĀ 

  • De Cooman, G., M.C.M. Troffaes, and E. Miranda. 2008. n-Monotone exact functionals. Journal of Mathematical Analysis and Applications 347(1):143ā€“156.

    ArticleĀ  Google ScholarĀ 

  • de Finetti, B. 1974. Theory of probability, vols. 1ā€“2. New York: Wiley.

    Google ScholarĀ 

  • Dempster, A.P. 1967. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38(2):325ā€“339.

    ArticleĀ  Google ScholarĀ 

  • Dubois, D., and H. Prade. 1988. Possibility theory: an approach to computerized processing of uncertainty. New York: Plenum Press.

    Google ScholarĀ 

  • Dubois, D., and H. Prade. 1992. When upper probabilities are possibility measures. Fuzzy Sets and Systems 49(1):65ā€“74.

    ArticleĀ  Google ScholarĀ 

  • Gilboa, I., and D. Schmeidler. 1995. Canonical representation of set functions. Mathematics of Operations Research 20(1):197ā€“212.

    ArticleĀ  Google ScholarĀ 

  • Gilio, A. 1990. Criterio di penalizzazione e condizioni di coerenza nella valutazione soggettiva della probabilitĆ . Bollettino dellā€™Unione Matematica Italiana 4-B(3):645ā€“660.

    Google ScholarĀ 

  • Gilio, A., and G. Sanfilippo. 2011. Coherent conditional probabilities and proper scoring rules. In Proceedings of ISIPTA 2011.

    Google ScholarĀ 

  • Good, I.J. 1952. Rational decisions. Journal of the Royal Statistical Society. Series B (Methodological) 14(1):107ā€“114.

    ArticleĀ  Google ScholarĀ 

  • Grabisch, M. 2016. Set functions, games and capacities in decision making. Berlin: Springer.

    BookĀ  Google ScholarĀ 

  • Halpern, J. 2003. Reasoning about uncertainty. Cambridge: The MIT Press.

    Google ScholarĀ 

  • Jaffray, J.Y. 1989. Coherent bets under partially resolving uncertainty and belief functions. Theory and Decision 26(2):99ā€“105.

    ArticleĀ  Google ScholarĀ 

  • Kerkvliet, T., and R. Meester. 2018. A behavioral interpretation of belief functions. Journal of Theoretical Probability 31(4):2112ā€“2128.

    ArticleĀ  Google ScholarĀ 

  • KrƤtschmer, V. 2003. When fuzzy measures are upper envelopes of probability measures. Fuzzy Sets and Systems 138(3):455ā€“468.

    ArticleĀ  Google ScholarĀ 

  • Mangasarian, O.L. 1994. Nonlinear programming. In Classics in Applied Mathematics, vol. 10. Philadelphia: SIAM.

    Google ScholarĀ 

  • Marinacci, M. 1996. Decomposition and representation of coalitional games. Mathematics of Operations Research 21(4):1000ā€“1015.

    ArticleĀ  Google ScholarĀ 

  • Montes, I., E. Miranda, and P. Vicig. 2019. Outer approximating coherent lower probabilities with belief functions. International Journal of Approximate Reasoning 110:1ā€“30.

    ArticleĀ  Google ScholarĀ 

  • Nguyen, H.T. 2006. An introduction to random sets. Boca Raton: Chapman & Hall/CRC.

    BookĀ  Google ScholarĀ 

  • Petturiti, D., and B. Vantaggi. 2018. Upper and lower conditional probabilities induced by a multivalued mapping. Journal of Mathematical Analysis and Applications 458(2):1214ā€“1235.

    ArticleĀ  Google ScholarĀ 

  • Predd, J.B., R. Seiringer, E.H. Lieb, D.N. Osherson, H.V. Poor, and S.R. Kulkarni. 2009. Probabilistic coherence and proper scoring rules. IEEE Transactions on Information Theory 55(10):4786ā€“4792.

    ArticleĀ  Google ScholarĀ 

  • Regoli, G. 1994. Rational comparisons and numerical representations. In Decision Theory and Decision Analysis: Trends and Challenges, ed. RĆ­os, S., 113ā€“126. Dordrecht: Springer.

    ChapterĀ  Google ScholarĀ 

  • Schervish, M.J., T. Seidenfeld, and J.B. Kadane. 2009. Proper scoring rules, dominated forecasts, and coherence. Decision Analysis 6(4):202ā€“221.

    ArticleĀ  Google ScholarĀ 

  • Schmeidler, D. 1986. Integral representation without additivity. Proceedings of the American Mathematical Society 97(2):255ā€“261.

    ArticleĀ  Google ScholarĀ 

  • Seidenfeld, T. 1978. Statistical evidence and belief functions. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1978:478ā€“489.

    Google ScholarĀ 

  • Seidenfeld, T. 1985. Calibration, coherence, and scoring rules. Philosophy of Science 52(2):274ā€“294.

    ArticleĀ  Google ScholarĀ 

  • Seidenfeld, T., M.J. Schervish, and J.B. Kadane. 2018. Forecasting with imprecise probabilities. International Journal of Approximate Reasoning 458(2):1214ā€“1235.

    Google ScholarĀ 

  • Shafer, G. 1976. A mathematical theory of evidence. Princeton: Princeton University Press.

    BookĀ  Google ScholarĀ 

  • Troffaes, M.C.M., and G. de Cooman. 2014. Lower previsions. Wiley series in probability and statistics. Hoboken: Wiley

    Google ScholarĀ 

  • Walley, P. 1981. Coherent lower (and upper) probabilities. Tech. Rep. 22, Department of Statistics, University of Warwick.

    Google ScholarĀ 

  • Walley, P. 1991. Statistical reasoning with imprecise probabilities. London: Chapman and Hall.

    BookĀ  Google ScholarĀ 

  • Wasserman, L., and T. Seidenfeld. 1994. The dilation phenomenon in robust Bayesian inference. Journal of Statistical Planning and Inference 40(2):345ā€“356.

    ArticleĀ  Google ScholarĀ 

  • Wasserman, L.A. 1990. Prior envelopes based on belief functions. The Annals of Statistics 18(1):454ā€“464.

    ArticleĀ  Google ScholarĀ 

  • Williams, P.M. 2007. Notes on conditional previsions. Unpublished report of School of Mathematical and Physical Science, University of Sussex (Published in International Journal of Approximate Reasoning, 44:366ā€“383, 2007).

    Google ScholarĀ 

Download references

Acknowledgements

The authors are members of the INdAM-GNAMPA research group. The first author was supported by UniversitĆ  degli Studi di Perugia, Fondo Ricerca di Base 2019, project ā€œModelli per le decisioni economiche e finanziarie in condizioni di ambiguitĆ  ed imprecisioneā€.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Petturiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petturiti, D., Vantaggi, B. (2022). How to Assess Coherent Beliefs: A Comparison of Different Notions of Coherence in Dempster-Shafer Theory of Evidence. In: Augustin, T., Cozman, F.G., Wheeler, G. (eds) Reflections on the Foundations of Probability and Statistics. Theory and Decision Library A:, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-031-15436-2_8

Download citation

Publish with us

Policies and ethics