Skip to main content

Rebound Depolarizations

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders
  • 42 Accesses

Abstract

The deep cerebellar nuclei (DCN) are critical in defining the output of the cerebellum. The DCN are positioned at the base of cerebellum where they receive primarily GABAergic inhibitory input from Purkinje cells of cerebellar cortex. DCN cells exhibit a form of rebound membrane depolarization following a hyperpolarization that gives rise to a rebound spike burst. Intracellular recordings and calcium imaging have established roles for virtually all classes of calcium channels in the rebound response, with additional roles for sodium, HCN, and potassium channels. To determine the encoding properties of rebound depolarization in DCN cells, physiological patterns of Purkinje cell firing collected in vivo in response to whisker stimulation have been used to activate Purkinje cell axon tracts in cerebellar slices maintained in vitro. These tests reveal unexpected parameters of afferent spike input from Purkinje cells that are important to driving the rebound depolarizations in DCN cells, and thus the final output from cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol 82:1697–1709

    Article  CAS  PubMed  Google Scholar 

  • Alviña K, Khodakhah K (2008) Selective regulation of spontaneous activity of neurons of the deep cerebellar nuclei by N-type calcium channels in juvenile rats. J Physiol 586:2523–2538

    Article  PubMed  PubMed Central  Google Scholar 

  • Alviña K, Ellis-Davies G, Khodakhah K (2009) T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. Neuroscience 158:635–641

    Article  PubMed  Google Scholar 

  • Aman TK, Raman IM (2007) Subunit dependence of Na channel slow inactivation and open channel block in cerebellar neurons. Biophys J 92:1938–1951

    Article  CAS  PubMed  Google Scholar 

  • BareÅ¡ M, Apps R, Avanzino L, Breska A, D’Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA (2019) Consensus paper: decoding the contributions of the cerebellum as a time machine. From neurons to clinical applications. Cerebellum 18:266–286

    Article  PubMed  Google Scholar 

  • Bengtsson F, Ekerot C-F, Jörntell H (2011) In vivo analysis of inhibitory synaptic inputs and rebounds in deep cerebellar nuclear neurons. PLoS One 6:e18822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Maran SK, Dhamala M, Jaeger D, Heck DH (2012) Behavior-related pauses in simple-spike activity of mouse Purkinje cells are linked to spike rate modulation. J Neurosci 32:8678–8685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czubayko U, Sultan F, Thier P, Schwarz C (2001) Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. J Neurophysiol 85:2017–2029

    Article  CAS  PubMed  Google Scholar 

  • De Schutter E, Steuber V (2009) Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience 162:816–826

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK (2011) Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 12:327–344

    Article  PubMed  Google Scholar 

  • Dykstra S, Engbers JD, Bartoletti TM, Turner RW (2016) Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli. J Physiol 594:985–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engbers JDT, Anderson D, Tadayonnejad R, Mehaffey WH, Molineux ML, Turner RW (2011) Distinct roles for I(T) and I(H) in controlling the frequency and timing of rebound spike responses. J Physiol 589:5391–5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engbers JDT, Fernandez FR, Turner RW (2013) Bistability in Purkinje neurons: ups and downs in cerebellar research. Neural Netw 47:18–31

    Article  PubMed  Google Scholar 

  • Feng SS, Lin R, Gauck V, Jaeger D (2013) Gain control of synaptic response function in cerebellar nuclear neurons by a calcium-activated potassium conductance. Cerebellum 12:692–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heck DH, De Zeeuw CI, Jaeger D, Khodakhah K, Person AL (2013) The neuronal code(s) of the cerebellum. J Neurosci 33:17603–17609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiney SA, Kim J, Augustine GJ, Medina JF (2014) Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci 34:2321–2330

    Article  PubMed  PubMed Central  Google Scholar 

  • Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R (2015) Encoding of action by the Purkinje cells of the cerebellum. Nature 526:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoebeek FE, Witter L, Ruigrok TJH, De Zeeuw CI (2010) Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci U S A 107:8410–8415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Negrello M, Junker M, Smilgin A, Thier P, De Schutter E (2016) Multiplexed coding by cerebellar Purkinje neurons. Elife 5:e13810. https://doi.org/10.7554/eLife.13810

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahnsen H (1986) Extracellular activation and membrane conductances of neurones in the Guinea-pig deep cerebellar nuclei in vitro. J Physiol 372:149–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joho RH, Hurlock EC (2009) The role of Kv3-type potassium channels in cerebellar physiology and behavior. Cerebellum 8:323–333

    Article  CAS  PubMed  Google Scholar 

  • Llinás R, Mühlethaler M (1988) Electrophysiology of Guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol 404:241–258

    Article  PubMed  PubMed Central  Google Scholar 

  • Molineux ML, McRory JE, McKay BE, Hamid J, Mehaffey WH, Rehak R, Snutch TP, Zamponi GW, Turner RW (2006) Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc Natl Acad Sci U S A 103:5555–5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molineux ML, Mehaffey WH, Tadayonnejad R, Anderson D, Tennent AF, Turner RW (2008) Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons. J Neurophysiol 100:2684–2701

    Article  PubMed  Google Scholar 

  • Pedroarena CM (2010) Mechanisms supporting transfer of inhibitory signals into the spike output of spontaneously firing cerebellar nuclear neurons in vitro. Cerebellum 9:67–76

    Article  PubMed  Google Scholar 

  • Pedroarena CM (2011) BK and Kv3.1 potassium channels control different aspects of deep cerebellar nuclear neurons action potentials and spiking activity. Cerebellum 10:647–658

    Article  CAS  PubMed  Google Scholar 

  • Person AL, Raman IM (2012) Synchrony and neural coding in cerebellar circuits. Front Neural Circuits 6:97. https://doi.org/10.3389/fncir.2012.00097

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman IM, Gustafson AE, Padgett D (2000) Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci 20:9004–9016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangrey T, Jaeger D (2010) Analysis of distinct short and prolonged components in rebound spiking of deep cerebellar nucleus neurons. Eur J Neurosci 32:1646–1657

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider ER, Civillico EF, Wang SS-H (2013) Calcium-based dendritic excitability and its regulation in the deep cerebellar nuclei. J Neurophysiol 109:2282–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin S-L, De Schutter E (2006) Dynamic synchronization of Purkinje cell simple spikes. J Neurophysiol 96:3485–3491

    Article  PubMed  Google Scholar 

  • Shin S-L, Hoebeek FE, Schonewille M, De Zeeuw CI, Aertsen A, De Schutter E (2007) Regular patterns in cerebellar Purkinje cell simple spike trains. PLoS One 2:e485

    Article  PubMed  PubMed Central  Google Scholar 

  • Steuber V, Jaeger D (2013) Modeling the generation of output by the cerebellar nuclei. Neural Netw 47:112–119

    Article  PubMed  Google Scholar 

  • Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, De Schutter E (2007) Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54:121–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D (2011) Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. J Comput Neurosci 30:633–658

    Article  PubMed  Google Scholar 

  • Tadayonnejad R, Anderson D, Molineux ML, Mehaffey WH, Jayasuriya K, Turner RW (2010) Rebound discharge in deep cerebellar nuclear neurons in vitro. Cerebellum 9:352–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Uusisaari MY, Knöpfel T (2012) Diversity of neuronal elements and circuitry in the cerebellar nuclei. Cerebellum 11:420–421

    Article  PubMed  Google Scholar 

  • Uusisaari M, Obata K, Knöpfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97:901–911

    Article  CAS  PubMed  Google Scholar 

  • Witter L, Canto CB, Hoogland TM, de Gruijl JR, De Zeeuw CI (2013) Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circuits 7:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Yartsev MM, Givon-Mayo R, Maller M, Donchin O (2009) Pausing Purkinje cells in the cerebellum of the awake cat. Front Syst Neurosci 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Zang Y, De Schutter E (2021) The cellular electrophysiological properties underlying multiplexed coding in Purkinje cells. J Neurosci 41:1850–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng N, Raman IM (2009) Ca currents activated by spontaneous firing and synaptic disinhibition in neurons of the cerebellar nuclei. J Neurosci 29:9826–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Voges K, Lin Z, Ju C, Schonewille M (2015) Differential Purkinje cell simple spike activity and pausing behavior related to cerebellar modules. J Neurophysiol 113:2524–2536

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray W. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dykstra, S., Turner, R.W. (2023). Rebound Depolarizations. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_41

Download citation

Publish with us

Policies and ethics