Skip to main content

Macroscale Microfabrication Enabled by Nanoscale Morphological Control of Laser Internal Modification

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Abstract

Over the past decades, ultrafast laser internal modification has become a widely adopted approach to enable three-dimensional (3D) micromachining of transparent materials into sophisticated structures and devices with the extreme geometrical flexibility. Owing to the linear diffraction and nonlinear self-focusing effects, it is extremely challenging to maintain the high longitudinal resolution when focusing deeply into the transparent substrates for achieving macroscale microfabrication, i.e., fabrication of objects of centimeter-level heights without sacrificing the micrometer-scale resolution. We overcome this tremendous difficulty using loosely focused picosecond laser pulses, which, surprisingly, offer focal-volume-invariant modification deeply inside fused silica glass and give rise to the formation of extended nanocracks preferentially oriented along the laser scan direction. We show that the combination of these two advantages uniquely allows efficient macroscale microfabrication as demanded by various applications such as 3D glass printing and flow chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.R. Gattass, E. Mazur, Nat. Photonics 2, 219–225 (2008). https://doi.org/10.1038/nphoton.2008.226

    Article  ADS  Google Scholar 

  2. K. Sugioka, Y. Cheng, Appl. Phys. Rev. 1, 041303 (2014). https://doi.org/10.1063/1.4904320

    Article  ADS  Google Scholar 

  3. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Light Sci. Appl. 5, e16133 (2016). https://doi.org/10.1038/lsa.2016.133

    Article  ADS  Google Scholar 

  4. J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, O. Kraft, Proc. Natl. Acad. Sci. U. S. A. 111, 2453–2458 (2014). https://doi.org/10.1063/1.5114955

    Article  ADS  Google Scholar 

  5. J. Zhang, M. Gecevičius, M. Beresna, P.G. Kazansky, Phys. Rev. Lett. 112, 033901 (2014). https://doi.org/10.1103/PhysRevLett.112.033901

    Article  ADS  Google Scholar 

  6. A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, P. Mataloni, Nat. Photonics 7, 322–328 (2013). https://doi.org/10.1038/nphoton.2013.26

    Article  ADS  Google Scholar 

  7. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. Lett. 74, 2248–2251 (1995). https://doi.org/10.1103/PhysRevLett.74.2248

    Article  ADS  Google Scholar 

  8. A.P. Joglekar, H.H. Liu, E. Meyhofer, G. Mourou, A.J. Hunt, Proc. Natl. Acad. Sci. U. S. A. 101, 5856–5861 (2004). https://doi.org/10.1073/pnas.0307470101

    Article  ADS  Google Scholar 

  9. Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, K. Midorikawa, Opt. Lett. 38, 187–189 (2013). https://doi.org/10.1364/OL.38.000187

    Article  ADS  Google Scholar 

  10. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Opt. Lett. 28, 55–57 (2003). https://doi.org/10.1364/OL.28.000055

    Article  ADS  Google Scholar 

  11. L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, T. Baumert, Appl. Phys. A Mater. Sci. Process. 92, 749–753 (2008). https://doi.org/10.1007/s00339-008-4584-1

    Article  ADS  Google Scholar 

  12. M.K. Bhuyan, F. Courvoisier, P.A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, J.M. Dudley, Appl. Phys. Lett. 97, 081102 (2010). https://doi.org/10.1109/URSIGASS.2011.6050591

    Article  ADS  Google Scholar 

  13. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, Opt. Lett. 35, 1106–1108 (2010). https://doi.org/10.1364/OL.35.001106

    Article  ADS  Google Scholar 

  14. A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I.V. Hertel, E. Audouard, R. Stoian, Appl. Phys. Lett. 93, 021921 (2008). https://doi.org/10.1063/1.2958345

    Article  ADS  Google Scholar 

  15. A. Mermillod-Blondin, I.M. Burakov, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, R. Stoian, Phys. Rev. B 77, 104205 (2008). https://doi.org/10.1103/PhysRevB.77.104205

    Article  ADS  Google Scholar 

  16. P.S. Salter, A. Jesacher, J.B. Spring, B.J. Metcalf, N. Thomas-Peter, R.D. Simmonds, N.K. Langford, I.A. Walmsley, M.J. Booth, Opt. Lett. 37, 470–472 (2012). https://doi.org/10.1364/OL.37.000470

    Article  ADS  Google Scholar 

  17. Y.C. Chen, P.S. Salter, S. Knauer, L. Weng, A.C. Frangeskou, C.J. Stephen, S.N. Ishmael, P.R. Dolan, S. Johnson, B.L. Green, G.W. Morley, M.E. Newton, J.G. Rarity, M.J. Booth, J.M. Smith, Nat. Photonics 11, 77–80 (2017). https://doi.org/10.1038/nphoton.2016.234

    Article  ADS  Google Scholar 

  18. R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials Ch. 1 (Springer Science & Business Media, New York, 2012). https://doi.org/10.1007/978-3-642-23366-1

    Book  Google Scholar 

  19. P. Török, P. Varga, Z. Laczik, G.R. Booker, J. Opt. Soc. Am. A 12, 325 (1995). https://doi.org/10.1364/JOSAA.12.000325

    Article  ADS  Google Scholar 

  20. C. Hnatovsky, R.S. Taylor, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, J. Appl. Phys. 98, 013517 (2005). https://doi.org/10.1007/s00339-006-3590-4

    Article  ADS  Google Scholar 

  21. A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47–189 (2007). https://doi.org/10.1016/j.physrep.2006.12.005

    Article  ADS  Google Scholar 

  22. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26, 277–279 (2001). https://doi.org/10.1364/OL.26.000277

    Article  ADS  Google Scholar 

  23. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, H. Misawa, Appl. Phys. A Mater. Sci. Process. 79, 1549–1553 (2004). https://doi.org/10.1007/s00339-004-2845-1

    Article  ADS  Google Scholar 

  24. Y. Bellouard, A. Said, M. Dugan, P. Bado, Opt. Express 12, 2120–2129 (2004). https://doi.org/10.1364/OPEX.12.002120

    Article  ADS  Google Scholar 

  25. C. Hnatovsky, R.S. Taylor, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Opt. Lett. 30, 1867–1869 (2005). https://doi.org/10.1364/OL.30.001867

    Article  ADS  Google Scholar 

  26. C. Hnatovsky, R.S. Taylor, P.P. Rajeev, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Appl. Phys. Lett. 87, 014104 (2005). https://doi.org/10.1063/1.1991991

    Article  ADS  Google Scholar 

  27. C. Hnatovsky, R.S. Taylor, E. Simova, P.P. Rajeev, D.M. Rayner, V.R. Bhardwaj, P.B. Corkum, Appl. Phys. A Mater. Sci. Process. 84, 47–61 (2006). https://doi.org/10.1007/s00339-006-3590-4

    Article  ADS  Google Scholar 

  28. R. Taylor, C. Hnatovsky, E. Simova, Laser Photonics Rev. 2, 26–46 (2008). https://doi.org/10.1002/lpor.200710031

    Article  ADS  Google Scholar 

  29. K.C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, R. Osellame, Opt. Express 17, 8685–8695 (2009). https://doi.org/10.1364/OE.17.008685

    Article  ADS  Google Scholar 

  30. S. Kiyama, S. Matsuo, S. Hashimoto, Y. Morihira, J. Phys. Chem. C 113, 11560–11566 (2009). https://doi.org/10.1021/jp900915r

    Article  Google Scholar 

  31. V. Stankevič, J. Karosas, G. Račiukaitis, P. Gečys, Micromachines 11, 483 (2020). https://doi.org/10.3390/mi11050483

    Article  Google Scholar 

  32. X. Li, J. Xu, Z. Lin, J. Qi, P. Wang, W. Chu, Z. Fang, Z. Wang, Z. Chai, Y. Cheng, Appl. Surf. Sci. 485, 188–193 (2019). https://doi.org/10.1016/j.apsusc.2019.04.211

    Article  ADS  Google Scholar 

  33. P. Wang, W. Chu, W. Li, Y. Tan, F. Liu, M. Wang, J. Qi, J. Lin, F. Zhang, Z. Wang, Y. Cheng, Micromachines 10, 565 (2019). https://doi.org/10.3390/mi10090565

    Article  Google Scholar 

  34. Z. Lin, J. Xu, Y. Song, X. Li, P. Wang, W. Chu, Z. Wang, Y. Cheng, Adv. Mater. Technol. 5, 1900989 (2020). https://doi.org/10.1002/admt.201900989

    Article  Google Scholar 

  35. H. Zhang, P. Wang, W. Chu, J. Yu, W. Li, J. Qi, Z. Wang, Y. Cheng, et al. arXiv:2004.03894 (2020). https://arxiv.org/abs/2004.03894

  36. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965)

    Google Scholar 

  37. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071–3073 (1994). https://doi.org/10.1063/1.111350

    Article  ADS  Google Scholar 

  38. A.C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Phys. Rev. Lett. 82, 3883–3886 (1999). https://doi.org/10.1103/PhysRevLett.82.3883

    Article  ADS  Google Scholar 

  39. S.S. Mao, F. Quéré, S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin, Appl. Phys. A Mater. Sci. Process. 79, 1695–1709 (2004). https://doi.org/10.1007/s00339-004-2684-0

    Article  ADS  Google Scholar 

  40. K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, MRS Bull. 31, 620–625 (2006). https://doi.org/10.1557/mrs2006.159

    Article  Google Scholar 

  41. K. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996). https://doi.org/10.1364/ol.21.001729

    Article  ADS  Google Scholar 

  42. C.B. Schaffer, A. Brodeur, J.F. García, E. Mazur, Opt. Lett. 26, 93–95 (2001). https://doi.org/10.1364/OL.26.000093

    Article  ADS  Google Scholar 

  43. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P.G. Kazansky, K. Hirao, Opt. Lett. 24, 646–648 (1999). https://doi.org/10.1364/OL.24.000646

    Article  ADS  Google Scholar 

  44. E. Bricchi, J.D. Mills, P.G. Kazansky, B.G. Klappauf, J.J. Baumberg, Opt. Lett. 27, 2200–2202 (2002). https://doi.org/10.1364/OL.27.002200

    Article  ADS  Google Scholar 

  45. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003). https://doi.org/10.1103/PhysRevLett.91.247405

    Article  ADS  Google Scholar 

  46. V.R. Bhardwaj, E. Simova, P.P. Rajeev, C. Hnatovsky, R.S. Taylor, D.M. Rayner, P.B. Corkum, Phys. Rev. Lett. 96, 057404 (2006). https://doi.org/10.1103/PhysRevLett.96.057404

    Article  ADS  Google Scholar 

  47. M. Beresna, M. Gecevičius, P.G. Kazansky, T. Taylor, A.V. Kavokin, Appl. Phys. Lett. 101, 053120 (2012). https://doi.org/10.1063/1.4742899

    Article  ADS  Google Scholar 

  48. A. Rudenko, J.P. Colombier, T.E. Itina, Phys. Rev. B 93, 075427 (2016). https://doi.org/10.1103/PhysRevB.93.075427

    Article  ADS  Google Scholar 

  49. M. Beresna, M. Gecevičius, P.G. Kazansky, Opt. Mater. Express 1, 783–795 (2011). https://doi.org/10.1364/OME.1.000783

    Article  ADS  Google Scholar 

  50. M. Beresna, M. Gecevičius, P.G. Kazansky, Adv. Opt. Photon. 6, 293–339 (2014). https://doi.org/10.1364/AOP.6.000293

    Article  Google Scholar 

  51. V. Maselli, J.R. Grenier, S. Ho, P.R. Herman, Opt. Express 17, 11719–11729 (2009). https://doi.org/10.1364/OE.17.011719

    Article  ADS  Google Scholar 

  52. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, Lab Chip 12, 746–749 (2012). https://doi.org/10.1039/C2LC21015K

    Article  Google Scholar 

  53. K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, K. Midorikawa, Lab Chip 14, 3447–3459 (2014). https://doi.org/10.1039/C4LC00548A

    Article  Google Scholar 

  54. Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, Y. Cheng, Optica 2, 329–334 (2015). https://doi.org/10.1364/OPTICA.2.000329

    Article  ADS  Google Scholar 

  55. E.N. Glezer, E. Mazur, Appl. Phys. Lett. 71, 882–884 (1997). https://doi.org/10.1063/1.119677

    Article  ADS  Google Scholar 

  56. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006). https://doi.org/10.1103/PhysRevLett.96.166101

    Article  ADS  Google Scholar 

  57. E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Mazur, Opt. Lett. 21, 2023–2025 (1996). https://doi.org/10.1364/OL.21.002023

    Article  ADS  Google Scholar 

  58. M. Deubel, G.V. Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Nat. Mater. 3, 444–447 (2004). https://doi.org/10.1038/nmat1155

    Article  ADS  Google Scholar 

  59. S. Juodkazis, V. Mizeikis, H. Misawa, J. Appl. Phys. 106, 051101 (2009). https://doi.org/10.1063/1.3216462

    Article  ADS  Google Scholar 

  60. I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, J. Appl. Phys. 101, 043506 (2007). https://doi.org/10.1063/1.2436925

    Article  ADS  Google Scholar 

  61. C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, P.G. Kazansky, Opt. Express 21, 3946–3958 (2013). https://doi.org/10.1364/OE.21.003946

    Article  ADS  Google Scholar 

  62. P.K. Velpula, M.K. Bhuyan, F. Courvoisier, H. Zhang, J.P. Colombier, R. Stoian, Laser Photonics Rev. 10, 230–244 (2016). https://doi.org/10.1002/lpor.201500112

    Article  ADS  Google Scholar 

  63. K. Bergner, B. Seyfarth, K.A. Lammers, T. Ullsperger, S. Döring, M. Heinrich, M. Kumkar, D. Flamm, A. Tünnermann, S. Nolte, Appl. Opt. 57, 4618–4632 (2018). https://doi.org/10.1364/AO.57.004618

    Article  ADS  Google Scholar 

  64. M. Sakakura, M. Terazima, Phys. Rev. B 71, 024113 (2005). https://doi.org/10.1103/PhysRevB.71.024113

    Article  ADS  Google Scholar 

  65. D.G. Papazoglou, S. Tzortzakis, Opt. Mater. Express 1, 625 (2011). https://doi.org/10.1364/OME.1.000625

    Article  ADS  Google Scholar 

  66. D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, R. Poprawe, Opt. Express 24, 023221 (2016). https://doi.org/10.1364/OE.24.023221

    Article  Google Scholar 

  67. M.K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.P. Colombier, R. Stoian, Optica 4, 951–958 (2017). https://doi.org/10.1364/OPTICA.4.000951

    Article  ADS  Google Scholar 

  68. F. Docchio, P. Regondi, M.R.C. Capon, J. Mellerio, Appl. Opt. 27, 3661–3668 (1988). https://doi.org/10.1364/AO.27.003661

    Article  ADS  Google Scholar 

  69. D.X. Hammer, E.D. Jansen, M. Frenz, G.D. Noojin, R.J. Thomas, J. Noack, A. Vogel, B.A. Rockwell, A.J. Welch, Appl. Opt. 36, 5630–5640 (1997). https://doi.org/10.1364/AO.36.005630

    Article  ADS  Google Scholar 

  70. P. Audebert, P. Daguzan, A. Dos Santos, J.C. Gauthier, J.P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, A. Antonetti, Phys. Rev. Lett. 73, 1990 (1994). https://doi.org/10.1103/PhysRevLett.73.1990

    Article  ADS  Google Scholar 

  71. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998). https://doi.org/10.1016/S0022-3093(98)00720-0

    Article  ADS  Google Scholar 

  72. J.W. Chan, T.R. Huser, S.H. Risbud, D.M. Krol, Appl. Phys. A Mater. Sci. Process. 76, 367–372 (2003). https://doi.org/10.1007/s00339-002-1822-9

    Article  ADS  Google Scholar 

  73. D.M. Rayner, A. Naumov, P.B. Corkum, Opt. Express 13, 3208–3217 (2005). https://doi.org/10.1364/OPEX.13.003208

    Article  ADS  Google Scholar 

  74. A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005). https://doi.org/10.1103/PhysRevB.71.125435

    Article  ADS  Google Scholar 

  75. A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, Appl. Phys. A Mater. Sci. Process. 69, S373–S376 (1999). https://doi.org/10.1007/s003390051419

    Article  ADS  Google Scholar 

  76. G. Raciukaitis, M. Brikas, P. Gecys, M. Gedvilas, Proc. SPIE 7005, High-Power Laser Ablation VII (2008), p. 70052L. https://doi.org/10.1117/12.782937

  77. F. Bauer, A. Michalowski, T. Kiedrowski, S. Nolte, Opt. Express 23, 1035 (2015). https://doi.org/10.1364/OE.23.001035

    Article  ADS  Google Scholar 

  78. P.P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R.S. Taylor, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Phys. Rev. Lett. 97, 253001 (2006). https://doi.org/10.1103/PhysRevLett.97.253001

    Article  ADS  Google Scholar 

  79. D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D.M. Rayner, P.B. Corkum, Phys. Rev. B 81, 212301 (2010). https://doi.org/10.1103/PhysRevB.81.212301

    Article  ADS  Google Scholar 

  80. B. Rethfeld, Phys. Rev. Lett. 92, 187401 (2004). https://doi.org/10.1103/PhysRevLett.92.209901

    Article  ADS  Google Scholar 

  81. P.G. Kazansky, M. Beresna, Top. Appl. Phys. 123, 127 (2012). https://doi.org/10.1007/978-3-642-23366-1_6

    Article  Google Scholar 

  82. P. Wang, W. Chu, X. Li, Z. Lin, J. Xu, H. Zhang, Y. Cheng, Proc. SPIE 11268, Laser-Based Micro- and Nanoprocessing XIV (2020), p. 1126808. https://doi.org/10.1117/12.2542020

  83. F. Gomollón-Bel, Chem. Int. 41, 12–17 (2019). https://doi.org/10.1515/ci-2019-0203

    Article  Google Scholar 

  84. Y. Cheng, W. Zhu, X. Qian, Beyond Limits Manufacturing: Mass Customization of Factory-on-a-Chip for Flow Chemistry in 70 Years of Excellence: ECNU’s Ongoing Commitment to Cutting-Edge, Cross-Disciplinary Research (Science/AAAS, Washington DC, 2021), pp. 17–19

    Google Scholar 

  85. D. Yin, Y. Li, L. Xia, W. Li, W. Chu, J. Yu, M. Wu, Y. Cheng, M. Hu, Chin. Chem. Lett. 33, 1077–1080 (2022). https://doi.org/10.1016/j.cclet.2021.05.073

    Article  Google Scholar 

  86. M. Wu, L. Xia, Y. Li, D. Yin, J. Yu, W. Li, N. Wang, X. Li, J. Cui, W. Chu, Y. Cheng, M. Hu, Chin. Chem. Lett. 33, 497–500 (2022). https://doi.org/10.1016/j.cclet.2021.07.004

    Article  Google Scholar 

  87. W. Li, Y. Li, W. Zhang, D. Yin, Y. Cheng, W. Chu, M. Hu, Chin. Chem. Lett. 32, 1131–1134 (2021). https://doi.org/10.1016/j.cclet.2020.09.039

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, Y. et al. (2023). Macroscale Microfabrication Enabled by Nanoscale Morphological Control of Laser Internal Modification. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_10

Download citation

Publish with us

Policies and ethics