Skip to main content

Quill and Nonreciprocal Ultrafast Laser Writing

  • Chapter
  • First Online:
Femtosecond Laser Micromachining

Part of the book series: Topics in Applied Physics ((TAP,volume 123))

Abstract

Since the discovery of lasers, it was believed that a Gaussian mode of a laser beam interacting with an isotropic medium can produce only centrosymmetric material modifications. However, recent experiments provide the evidence that it is not always true. A remarkable phenomenon in ultrafast laser processing of transparent materials has been reported manifesting itself as a change in material modification by reversing the writing direction. The phenomenon has been interpreted in terms of plasma anisotropic trapping and heating by a tilted front of the ultrashort laser pulse. It has been experimentally demonstrated that indeed the pulse front tilt can be used to control material modifications and in particular as a new tool for laser processing and optical manipulation. Additionally, a new type of light-induced modification in a solid, namely an anisotropic cavitation, was observed in the vicinity of the focus at high fluences. The bubbles, formed in the bulk of the glass, can be trapped and manipulated in the plane perpendicular to the light propagation direction by controlling the laser writing direction relative to the tilt of the pulse front. Another common belief was that in a homogeneous medium, the photosensitivity and corresponding light-induced material modifications do not change on the reversal of light propagation direction. Recently, it was demonstrated that when the direction of the femtosecond laser beam is reversed from + Z to − Z directions, the structures written in a lithium niobate crystal are mirror images when translating the beam along the + Y and − Y directions. In contrast to glass, the directional dependence of writing in lithium niobate depends on the orientation of the crystal with respect to the direction of the beam movement and the light propagation direction. A theoretical model was created to demonstrate how interplay of the crystal anisotropy and light-induced heat flow can lead to a new nonreciprocal nonlinear optical phenomenon, nonreciprocal photosensitivity. In the lithium niobate, the nonreciprocal photosensitivity manifests itself as a changing the sign of the light-induced current when the light propagation direction is reversed. Therefore, in a non-centrosymmetric medium, modification of the material can be different when light propagates in opposite directions. Nonreciprocity is produced by magnetic field (Faraday effect) and movement of the medium with respect to the direction of light propagation: parallel (Sagnac effect) or perpendicular (KaYaSo effect).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.B. Chrisey, “Materials processing - The power of direct writing,” Science 289, 879 (2000)

    Article  Google Scholar 

  2. R. Birngruber, C.A. Puliafito, A. Gawande, W.Z. Lin, R.W. Schoenlein, J.G. Fujimoto, “Femtosecond laser tissue interactions - retinal injury studies,” IEEE J. Quant. Electron. 23, 1836–1844, (1987)

    Article  ADS  Google Scholar 

  3. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996)

    Article  ADS  Google Scholar 

  4. E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, J.P. Callan, E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996)

    Article  ADS  Google Scholar 

  5. W.J. Yang, P.G. Kazansky, Y.P. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon. 2, 99–104 (2008)

    Article  ADS  Google Scholar 

  6. Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  7. U.K. Tirlapur, K. Konig, “Cell biology - Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002)

    Article  ADS  Google Scholar 

  8. Y.Q. Jiang, Y. Matsumoto, Y. Hosokawa, H. Masuhara, I. Oh, “Trapping and manipulation of a single micro-object in solution with femtosecond laser-induced mechanical force,” Appl. Phys. Lett. 90, 3 (2007)

    Google Scholar 

  9. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995)

    Article  ADS  Google Scholar 

  10. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994)

    Article  ADS  Google Scholar 

  11. P.G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82, 2199–2202 (1999)

    Article  ADS  Google Scholar 

  12. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999)

    Article  ADS  Google Scholar 

  13. E. Bricchi, B.G. Klappauf, P.G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29, 119–121 (2004)

    Article  ADS  Google Scholar 

  14. E. Bricchi, J.D. Mills, P.G. Kazansky, B.G. Klappauf, J.J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27, 2200–2202 (2002)

    Article  ADS  Google Scholar 

  15. J.D. Mills, P.G. Kazansky, E. Bricchi, J.J. Baumberg, “Embedded anisotropic microreflectors by femtosecond-laser nanomachining,” Appl. Phys. Lett. 81, 196–198 (2002)

    Article  ADS  Google Scholar 

  16. C. Hnatovsky, R.S. Taylor, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867–1869 (2005)

    Article  ADS  Google Scholar 

  17. C. Hnatovsky, R.S. Taylor, P.P. Rajeev, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 3 (2005)

    Article  Google Scholar 

  18. V.R. Bhardwaj, E. Simova, P.P. Rajeev, C. Hnatovsky, R.S. Taylor, D.M. Rayner, P.B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404, (2006)

    Article  ADS  Google Scholar 

  19. W.M. Steen, Laser material processing, (Springer, London; New York, 1998)

    Google Scholar 

  20. S.M. Eaton, H.B. Zhang, P.R. Herman, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Exp. 13, 4708–4716 (2005)

    Article  ADS  Google Scholar 

  21. S. Akturk, M. Kimmel, P. O’Shea, R. Trebino, “Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,” Opt. Exp. 11, 491–501 (2003)

    Article  ADS  Google Scholar 

  22. W. L. Kruer, The physics of laser plasma interactions, (Westview Press, Boulder, Colorado, 2001)

    Google Scholar 

  23. M. Ashourabdalla, J.N. Leboeuf, T. Tajima, J.M. Dawson, C.F. Kennel, “Ultra-relativistic electromagnetic pulses in plasmas,” Phys. Rev. A 23, 1906–1914 (1981)

    Article  ADS  Google Scholar 

  24. S. Akturk, M. Kimmel, P. O’Shea, R. Trebino, “Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating,” Opt. Exp. 11, 68–78 (2003)

    Article  ADS  Google Scholar 

  25. R. Graf, A. Fernandez, M. Dubov, H.J. Brueckner, B.N. Chichkov, A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B-Lasers Opt. 87, 21–27 (2007)

    Article  ADS  Google Scholar 

  26. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  27. A. Vogel, J. Noack, G. Huttman, G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B-Lasers Opt. 81, 1015–1047 (2005)

    Article  ADS  Google Scholar 

  28. E. Bricchi, P.G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88, 3 (2006)

    Article  Google Scholar 

  29. O. Ogorodnikova, R. Konig, A. Pospieszczyk, B. Schweer, J. Linke, “Thermo-stress analysis of actively cooled diagnostic windows for quasi-continuous operation of the W7-X stellarator,” J. Nucl. Mater. 341, 175–183 (2005)

    Article  ADS  Google Scholar 

  30. A. Barty, K.A. Nugent, D. Paganin, A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998)

    Article  ADS  Google Scholar 

  31. A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. a-Mater. Sci. Process. 80, 1647–1652 (2005)

    Article  ADS  Google Scholar 

  32. L. Gui, B.X. Xu, T.C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16, 1337–1339 (2004)

    Article  ADS  Google Scholar 

  33. R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006)

    Article  ADS  Google Scholar 

  34. B. Sturman, V.M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials, (Gordon&Breach, New York, 1992)

    Google Scholar 

  35. E.L. Ivchenko, G.E. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, (Springer, Berlin, 1995)

    Book  Google Scholar 

  36. A.H. Nejadmalayeri, P.R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Exp. 15, 10842–10854 (2007)

    Article  ADS  Google Scholar 

  37. G. Rikken, E. Raupach, “Observation of magneto-chiral dichroism,” Nature 390, 493–494 (1997)

    Article  ADS  Google Scholar 

  38. P.G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express 19, 20657–20664 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Kazansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kazansky, P.G., Beresna, M. (2012). Quill and Nonreciprocal Ultrafast Laser Writing. In: Osellame, R., Cerullo, G., Ramponi, R. (eds) Femtosecond Laser Micromachining. Topics in Applied Physics, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23366-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23366-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23365-4

  • Online ISBN: 978-3-642-23366-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics