Skip to main content

Assessment of Nicotinamide Adenine Dinucleotide in Human Tissues by In Vivo Phosphorus-31 Magnetic Resonance Spectroscopic Imaging at 1.5 Tesla

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XLIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1395))

Abstract

As a phosphorus-containing molecule, nicotinamide adenine dinucleotide is visible by phosphorus magnetic resonance spectroscopy (31P-MRS). However, the relatively low cellular levels of its oxidised (NAD+) and reduced (NADH) forms and a significant peak overlap hinder their evaluation in live tissues. This problem is critical when using 31P-MR spectroscopic imaging, where signals are localised from limited tissue volumes. We have reported improvements in spectral resolution of 31P-MRSI of human tissues in situ using a strict optimisation of the static magnetic field (B0 shimming) and 1H-irradiation during 31P acquisition. Given this, we aimed to demonstrate if these improvements allowed us to measure the in vivo intracellular levels of NAD+ and NADH at the relatively low magnetic field of 1.5 tesla (T). Our results show the feasibility of the in vivo determination of NAD+ and NADH from relatively small volumes of human tissues studied at 1.5 T. These results are clinically relevant as the currently available systems for human use mainly operate at 1.5 or 3.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodman RP, Calvo SE, Mootha VK (2018) Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism. J Biol Chem 293(20):7508–7516. https://doi.org/10.1074/jbc.TM117.000258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hassinen IE (2019) Signaling and regulation through the NAD(+) and NADP(+) networks. Antioxid Redox Signal 30(6):857–874. https://doi.org/10.1089/ars.2017.7479

    Article  CAS  PubMed  Google Scholar 

  3. Pina-Garza E, Garcia-Sainz A (1983) Chagoya de Sanchez V, Arias-Mendoza F. [ethanol: catabolism and metabolic effects. I. Introduction]. Gac Med Mex 119(1):1–14

    CAS  PubMed  Google Scholar 

  4. Zhang Z, Xu HN, Li S, Chellappa K, Davis JG et al (2020) Rapamycin maintains NAD(+)/NADH redox homeostasis in muscle cells. Aging 12(18):17786–17799. https://doi.org/10.18632/aging.103954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu HN, Li LZ (2014) Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity. J Innov Opt Heal Sci 7(2):1430002. https://doi.org/10.1142/S179354581430002X

    Article  CAS  Google Scholar 

  6. Li LZ, Xu HN, Ranji M, Nioka S, Chance B (2009) Mitochondrial redox imaging for cancer diagnostic and therapeutic studies. J Innov Opt Heal Sci. 2:325–341. https://doi.org/10.1142/S1793545809000735

    Article  Google Scholar 

  7. Lu M, Zhu XH, Zhang Y, Chen W (2014) Intracellular redox state revealed by in vivo (31) P MRS measurement of NAD(+) and NADH contents in brains. Magn Reson Med 71(6):1959–1972. https://doi.org/10.1002/mrm.24859

    Article  CAS  PubMed  Google Scholar 

  8. Zhu X-H, Lu M, Lee B-Y, Ugurbil K, Chen W (2015) In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci 112(9):2876–2881. https://doi.org/10.1073/pnas.1417921112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim SY, Cohen BM, Chen X, Lukas SE, Shinn AK, Yuksel AC et al (2017) Redox dysregulation in schizophrenia revealed by in vivo NAD+/NADH measurement. Schizophr Bull 43(1):197–204. https://doi.org/10.1093/schbul/sbw129

    Article  PubMed  Google Scholar 

  10. Conley KE, Ali AS, Flores B, Jubrias SA, Shankland EG (2016) Mitochondrial NAD(P)H in vivo: identifying natural indicators of oxidative phosphorylation in the (31)P magnetic resonance spectrum. Front Physiol 7:45. https://doi.org/10.3389/fphys.2016.00045

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arias-Mendoza F, Smith MR, Brown TR (2004) Predicting treatment response in non-Hodgkin's lymphoma from the pretreatment tumor content of phosphoethanolamine plus phosphocholine. Acad Radiol 11(4):368–376. https://doi.org/10.1016/s1076-6332(03)00721-9

    Article  PubMed  Google Scholar 

  12. Arias-Mendoza F, Payne GS, Zakian KL, Schwarz AJ, Stubbs M, Stoyanova R et al (2006) In vivo 31P MR spectral patterns and reproducibility in cancer patients studied in a multi-institutional trial. NMR Biomed 19(4):504–512. https://doi.org/10.1002/nbm.1057

    Article  CAS  PubMed  Google Scholar 

  13. Arias-Mendoza F, Zakian K, Schwartz A, Howe FA, Koutcher JA, Leach MO et al (2004) Methodological standardization for a multi-institutional in vivo trial of localized (31)P MR spectroscopy in human cancer research. In vitro and normal volunteer studies. NMR Biomed 17(6):382-391. https://doi.org/10.1002/nbm.915

    Article  CAS  PubMed  Google Scholar 

  14. Hu J, Javaid T, Arias-Mendoza F, Liu Z, McNamara R, Brown TR (1995) A fast, reliable, automatic shimming procedure using 1H chemical-shift-imaging spectroscopy. J Magn Reson B 108(3):213–219. https://doi.org/10.1006/jmrb.1995.1126

    Article  CAS  PubMed  Google Scholar 

  15. Brown TR (1992) Practical applications of chemical shift imaging. NMR Biomed. 5(5):238–243. https://doi.org/10.1002/nbm.1940050508

    Article  CAS  PubMed  Google Scholar 

  16. Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A 79(11):3523–3526. https://doi.org/10.1073/pnas.79.11.3523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nath K, Arias-Mendoza F, Xu HN, Gupta P, Li LZ (2022) Feasibility of noninvasive measurement of tumor NAD(H) by in vivo phosphorus-31 magnetic resonance spectroscopy. Adv Exp Med Biol

    Google Scholar 

Download references

Acknowledgments

This work was supported by US NIH Grants R01CA118559 and R21CA152858 (PI: F. Arias-Mendoza) for the data acquisition and US NIH Grant R01CA191207 (PI: L. Z. Li) for the data analysis. The authors wish to thank the Cooperative Group of MRS in cancer (CoGMaC) for their participation acquiring the breast cancer data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Arias-Mendoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arias-Mendoza, F., Nath, K., Xu, H.N., Gupta, P.K., Li, L.Z. (2022). Assessment of Nicotinamide Adenine Dinucleotide in Human Tissues by In Vivo Phosphorus-31 Magnetic Resonance Spectroscopic Imaging at 1.5 Tesla. In: Scholkmann, F., LaManna, J., Wolf, U. (eds) Oxygen Transport to Tissue XLIII. Advances in Experimental Medicine and Biology, vol 1395. Springer, Cham. https://doi.org/10.1007/978-3-031-14190-4_52

Download citation

Publish with us

Policies and ethics