Skip to main content

Abstract

Vat photopolymerization is an additive manufacturing process to build solid parts by leveraging photoinduced polymerization of liquid resins (i.e., a polymerization reaction triggered by irradiation). The chemical transformation of the monomers, oligomers, and/or prepolymers forming the resin (usually called vat) into polymers is in fact accompanied by a phase change from the liquid to the solid state. Vat photopolymerization includes a wide variety of processes and technologies, such as stereolithography (SLA), digital light processing (DLP), continuous liquid interface production (CLIP), and two-photon lithography (2PP). In all these techniques, the solid part is built layer by layer: the liquid resin fills a tank and its surface is selectively irradiated and cured; then the building platform is raised or lowered of a small increment to allow new liquid to flow forming another layer, which is cured by light and adjoins the previous one. Once the last layer is cured, the printed part is removed from the resin tank. As the polymer chemistry employed in vat photopolymerization is highly versatile, many innovations have been developed, and nowadays, complex multifunctional products with tailored performance can be printed, reaching high resolution and very low feature size, allowing their application in different fields. This chapter reviews vat photopolymerization technology and describes its chemistry, the different techniques (excluding 2PP, which is the focus of Chap. 3), and the materials employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO/ASTM52900-15. Standard Terminology for Additive Manufacturing – General Principles – Terminology

    Google Scholar 

  2. H. Kodama, Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev. Sci. Instrum. 52, 1770–1773 (1981)

    Article  Google Scholar 

  3. A.J. Herbert, Solid object generation. J. Appl. Photogr. Eng. 8, 185–188 (1982)

    Google Scholar 

  4. J.-C. Andre, A.L. Mehaute, O.D. Witte, Dispositif pour realiser un modele de piece industrielle, FR2567668B1. (1987)

    Google Scholar 

  5. Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography, US4575330A. (1986)

    Google Scholar 

  6. J.P. Fouassier, X. Allonas, J. Lalevée, C. Dietlin, Photoinitiators for free radical polymerization reactions, in Photochemistry and Photophysics of Polymer Materials, (Wiley, 2010), pp. 351–419. https://doi.org/10.1002/9780470594179.ch10

    Chapter  Google Scholar 

  7. J.V. Crivello, The discovery and development of onium salt cationic photoinitiators. J. Polym. Sci. A Polym. Chem. 37, 4241–4254 (1999)

    Article  CAS  Google Scholar 

  8. J.V. Crivello, K. Dietliker, Photoinitiators for Free Radical Cationic & Anionic Photopolymerisation (Wiley, 1998)

    Google Scholar 

  9. K. Suyama, M. Shirai, Photobase generators: Recent progress and application trend in polymer systems. Prog. Polym. Sci. 34, 194–209 (2009)

    Article  CAS  Google Scholar 

  10. J. Zhang et al., Structure design of naphthalimide derivatives: Toward versatile photoinitiators for near-UV/visible LEDs, 3D printing, and water-soluble photoinitiating systems. Macromolecules 48, 2054–2063 (2015)

    Article  CAS  Google Scholar 

  11. V.V. Rocheva et al., High-resolution 3D photopolymerization assisted by upconversion nanoparticles for rapid prototyping applications. Sci. Rep. 8, 3663 (2018)

    Article  Google Scholar 

  12. M. Chen et al., Living additive manufacturing: Transformation of parent gels into diversely functionalized daughter gels made possible by visible light photoredox catalysis. ACS Cent. Sci. 3, 124–134 (2017)

    Article  CAS  Google Scholar 

  13. C.N. Bowman, C.J. Kloxin, Toward an enhanced understanding and implementation of photopolymerization reactions. AICHE J. 54, 2775–2795 (2008)

    Article  CAS  Google Scholar 

  14. S.C. Ligon, B. Husár, H. Wutzel, R. Holman, R. Liska, Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem. Rev. 114, 557–589 (2014)

    Article  CAS  Google Scholar 

  15. S.C. Ligon-Auer, M. Schwentenwein, C. Gorsche, J. Stampfl, R. Liska, Toughening of photo-curable polymer networks: A review. Polym. Chem. 7, 257–286 (2015)

    Article  Google Scholar 

  16. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017)

    Article  CAS  Google Scholar 

  17. G. Moad, E. Rizzardo, S.H. Thang, Radical addition–fragmentation chemistry in polymer synthesis. Polymer 49, 1079–1131 (2008)

    Article  CAS  Google Scholar 

  18. A. Vitale, J.T. Cabral, Frontal conversion and uniformity in 3D printing by photopolymerisation. Materials 9, 760 (2016)

    Article  Google Scholar 

  19. T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, P. Dubruel, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33, 6020–6041 (2012)

    Article  CAS  Google Scholar 

  20. M. Pagac et al., A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3D printing. Polymers 13, 598 (2021)

    Article  CAS  Google Scholar 

  21. Z. Zhao, X. Tian, X. Song, Engineering materials with light: Recent progress in digital light processing based 3D printing. J. Mater. Chem. C 8, 13896–13917 (2020)

    Article  CAS  Google Scholar 

  22. J.R. Tumbleston et al., Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015)

    Article  CAS  Google Scholar 

  23. A.R. Johnson et al., Single-step fabrication of computationally designed microneedles by continuous liquid Interface production. PLoS One 11, e0162518 (2016)

    Article  Google Scholar 

  24. A. Bagheri, J. Jin, Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 1, 593–611 (2019)

    Article  CAS  Google Scholar 

  25. E.J. Murphy, R.E. Ansel, J.J. Krajewski, Investment casting utilizing patterns produced by stereolithography, US4844144A. (1989)

    Google Scholar 

  26. C.W. Hull, Method for production of three-dimensional objects by stereolithography, US4929402A. (1990)

    Google Scholar 

  27. B. Steyrer, B. Busetti, G. Harakály, R. Liska, J. Stampfl, Hot lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Addit. Manuf. 21, 209–214 (2018)

    CAS  Google Scholar 

  28. G. Peer et al., Photopolymerization of cyclopolymerizable monomers and their application in hot lithography. Macromolecules 51, 9344–9353 (2018)

    Article  CAS  Google Scholar 

  29. X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 110, 442–458 (2017)

    Article  CAS  Google Scholar 

  30. H. Wu et al., Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog. Mater. Sci. 111, 100638 (2020)

    Article  CAS  Google Scholar 

  31. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Muelhaupt, Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017)

    Article  CAS  Google Scholar 

  32. N. Travitzky et al., Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16, 729–754 (2014)

    Article  CAS  Google Scholar 

  33. T. Erps et al., Accelerated discovery of 3D printing materials using data-driven multiobjective optimization. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abf7435

  34. E.M. Maines, M.K. Porwal, C.J. Ellison, T.M. Reineke, Sustainable advances in SLA/DLP 3D printing materials and processes. Green Chem. 23, 6863–6897 (2021)

    Article  CAS  Google Scholar 

  35. N. Corrigan, J. Yeow, P. Judzewitsch, J. Xu, C. Boyer, Seeing the light: Advancing materials chemistry through photopolymerization. Angew. Chem. Int. Ed. 58, 5170–5189 (2019)

    Article  CAS  Google Scholar 

  36. L.J. Tan, W. Zhu, K. Zhou, Recent Progress on polymer materials for additive manufacturing. Adv. Funct. Mater. 30, 2003062 (2020)

    Article  CAS  Google Scholar 

  37. C. Mendes-Felipe, J. Oliveira, I. Etxebarria, J. Luis Vilas-Vilela, S. Lanceros-Mendez, State-of-the-art and future challenges of UV curable polymer-based smart materials for printing technologies. Adv. Mater. Technol. 4, 1800618 (2019)

    Article  Google Scholar 

  38. H.N. Chia, B.M. Wu, Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9, 4 (2015)

    Article  Google Scholar 

  39. D. Ahn, L.M. Stevens, K. Zhou, Z.A. Page, Rapid high-resolution visible light 3D printing. ACS Cent. Sci. 6, 1555–1563 (2020)

    Article  CAS  Google Scholar 

  40. X. Kuang et al., Advances in 4D printing: Materials and applications. Adv. Funct. Mater. 29, 1805290 (2019)

    Article  Google Scholar 

  41. M. Rafiee, R.D. Farahani, D. Therriault, Multi-material 3D and 4D printing: A survey. Adv. Sci. 7, 1902307 (2020)

    Article  CAS  Google Scholar 

  42. A. Andreu et al., 4D printing materials for vat photopolymerization. Addit. Manuf. 44, 102024 (2021)

    CAS  Google Scholar 

  43. H.K. Balakrishnan et al., 3D printing: An alternative microfabrication approach with unprecedented opportunities in design. Anal. Chem. 93, 350–366 (2021)

    Article  CAS  Google Scholar 

  44. W.L. Ng et al., Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication 12, 022001 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberta Bongiovanni or Alessandra Vitale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bongiovanni, R., Vitale, A. (2022). Vat Photopolymerization. In: Marasso, S.L., Cocuzza, M. (eds) High Resolution Manufacturing from 2D to 3D/4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-031-13779-2_2

Download citation

Publish with us

Policies and ethics