Skip to main content

Introduction to High-Resolution Manufacturing from 2D to 3D/4D Printing Technology Evolutions and Design Considerations

  • Chapter
  • First Online:
High Resolution Manufacturing from 2D to 3D/4D Printing

Abstract

Additive manufacturing (AM) includes a wide range of technologies that have been specialized to speed up the prototyping, especially in the field of mechanical engineering. In the last years, the use of polymer composites has opened novel opportunities in terms of functionalities to pave the way for a new generation of prototyping. Applications in electronics, medicine, and energy storage are growing and the prototyping of the devices in these fields faces new challenges related to their complexity and functionalities. In parallel, specific resolution capabilities to prototype high-performing devices are needed. For a better understanding of the potentiality and the differences between AM and other manufacturing approaches, a step inside the fundamental principles should be done. One of the main points is the shift from the top-down approach typical of the industry, as, for example, in microelectronics, to a bottom-up approach, which is typical of additive manufacturing and 3D printing. The paradigm change involves first of all the design. The main outcome of the industrial top-down approach is in fact a process flow, while in the AM bottom-up approach, the main outcome is a virtual model. In this scenario, it is of great interest to understand the new approaches introduced not only for the design of the devices, but also the main concepts related to the printability of 3D models and to the post-processing of the final 3D printed object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F42 Committee, ISO/ASTM52900:2021 Additive Manufacturng – General Principles – Terminology. Internet. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en (2015)

  2. A.E. Alexander et al., A guideline for 3D printing terminology in biomedical research utilizing ISO/ASTM standards. 3D Print. Med. 7, 4–9 (2021)

    Article  Google Scholar 

  3. C. W. Hull, Apparatus for production of three-dimensional objects by stereolithography. Patent 16 (1984)

    Google Scholar 

  4. S. Park, W. Shou, L. Makatura, W. Matusik, K. Fu (Kelvin), 3D printing of polymer composites: Materials, processes, and applications. Matter 5, 43–76 (2022)

    Article  CAS  Google Scholar 

  5. M. Criado-Gonzalez, A. Dominguez-Alfaro, N. Lopez-Larrea, N. Alegret, D. Mecerreyes, Additive manufacturing of conducting polymers: Recent advances, challenges, and opportunities. ACS Appl. Polym. Mater. 3, 2865–2883 (2021)

    Article  CAS  Google Scholar 

  6. W. Jamróz, J. Szafraniec, M. Kurek, R. Jachowicz, 3D printing in pharmaceutical and medical applications. Pharm. Res. 35, Article 176 (2018)

    Article  Google Scholar 

  7. Z.X. Khoo et al., 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys. Prototyp. 10, 103–122 (2015)

    Article  Google Scholar 

  8. F. Zhang et al., 3D printing technologies for electrochemical energy storage. Nano Energy 40, 418–431 (2017)

    Article  CAS  Google Scholar 

  9. L.A. Verhoef, B.W. Budde, C. Chockalingam, B. García Nodar, A.J.M. van Wijk, The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach. Energy Policy 112, 349–360 (2018)

    Article  Google Scholar 

  10. D.M. Nieto, D.M. Sánchez, Design for additive manufacturing: Tool review and a case study. Appl. Sci. 11, 1–13 (2021)

    CAS  Google Scholar 

  11. C. Deckard, Us4863538a (1986)

    Google Scholar 

  12. S. S. Crump, Apparatus and method for creating a three-dimensional object (1989)

    Google Scholar 

  13. E. M. Sachs, J. S. Haggerty, M. J. Cima, P. A. Williams. Three-dimensional printing techniques – United States Patent US5204055 (1993)

    Google Scholar 

  14. S. Maruo, S. Kawata, Two-photon-absorbed photopolymerization for three-dimensional microfabrication, in Proceedings IEEE the Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, (IEEE, 1997), pp. 169–174. https://doi.org/10.1109/MEMSYS.1997.581794

    Chapter  Google Scholar 

  15. https://www.makerbot.com/stories/news/makerbot-reaches-milestone-100000-3d-printers-sold-worldwide/.

  16. https://www.3dsystems.com/blog/foc/apple-acquires-exclusivity-for-freshfiber-iphone-cases.

  17. A. You, M.A.Y. Be, I. In, Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. J. Laser Appl. 24, 042004 (2015)

    Google Scholar 

  18. J.R. Tumbleston et al., Continuous liquid interface production of 3D objects. Science (80-. ) 347, 1349–1352 (2015)

    Article  CAS  Google Scholar 

  19. H.W. Kang et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016)

    Article  CAS  Google Scholar 

  20. V. Bertana et al., Rapid prototyping of 3D organic electrochemical transistors by composite photocurable resin. Sci. Rep. 10, 1–11 (2020)

    Article  Google Scholar 

  21. H. Wei et al., Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl. Mater. Interfaces 9, 876–883 (2017)

    Article  CAS  Google Scholar 

  22. S. Gantenbein et al., Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561, 226–230 (2018)

    Article  CAS  Google Scholar 

  23. C. Yuan et al., 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter 13, 5558–5568 (2017)

    Article  CAS  Google Scholar 

  24. J.J. Schwartz, A.J. Boydston, Multimaterial actinic spatial control 3D and 4D printing. Nat. Commun. 10, 791 (2019)

    Article  CAS  Google Scholar 

  25. A. Sydney Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016)

    Article  CAS  Google Scholar 

  26. S. Tibbits, 4D printing: Multi-material shape change. Archit. Des. 84, 116–121 (2014)

    Google Scholar 

  27. R. Doering, Y. Nishi, Handbook of Semiconductor Manufacturing Technology – 2nd Edition. Microelectronics Journal, vol 32 (CRC Press Taylor/Francis Grouo, 2001)

    Google Scholar 

  28. S.A. Rizvi, Handbook of Photomask Manufacturing Technology (Taylor & Francis, New York, 2005). https://doi.org/10.1201/9781420028782

    Book  Google Scholar 

  29. V. Pavlidis, S. Ioannis, E. Friedman, Three-Dimensional Integrated Circuit Design – 2nd Edition (Morgan Kaufmann, 2017)

    Google Scholar 

  30. N.A. Sherwani, Via minimization and over-the-cell routing, in Algorithms for VLSI Physical Design Automation, (Springer US, 1993), pp. 323–353. https://doi.org/10.1007/978-1-4757-2219-2_8

    Chapter  Google Scholar 

  31. A. Holovatyy, V. Teslyuk, M. Lobur, M. Szermer, C. Maj, Mask layout design of single- and double-arm electrothermal microactuators, in 2016 XII International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), (IEEE, 2016), pp. 28–30. https://doi.org/10.1109/MEMSTECH.2016.7507513

    Chapter  Google Scholar 

  32. M. Afshar et al., On-chip nanostructuring and impedance trimming of transparent and flexible ITO electrodes by laser induced coherent sub-20 nm cuts. Appl. Surf. Sci. 360, 494–501 (2016)

    Article  CAS  Google Scholar 

  33. A. Tommasi et al., Modeling, fabrication and testing of a customizable micromachined hotplate for sensor applications. Sensors 17, 62 (2016)

    Article  Google Scholar 

  34. N. Wilke, A. Mulcahy, S.-R. Ye, A. Morrissey, Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron. J. 36, 650–656 (2005)

    Article  CAS  Google Scholar 

  35. P.A. Alvi, International Frequency Sensor Association, MEMS Pressure Sensors: Fabrication and Process Optimization (International Frequency Sensor Association Publishing, 2012)

    Google Scholar 

  36. D.S. Macintyre et al., Nanoimprint lithography process optimization for the fabrication of high electron mobility transistors. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 21, 2783 (2003)

    Article  CAS  Google Scholar 

  37. O. Pilloni, M. Madou, D. Mendoza, S. Muhl, L. Oropeza-Ramos, Methodology and fabrication of adherent and crack-free SU-8 photoresist-derived carbon MEMS on fused silica transparent substrates. J. Micromech. Microeng. 29, 027002 (2019)

    Article  CAS  Google Scholar 

  38. R. Natu, M. Islam, J. Gilmore, R. Martinez-Duarte, Shrinkage of SU-8 microstructures during carbonization. J. Anal. Appl. Pyrolysis 131, 17–27 (2018)

    Article  CAS  Google Scholar 

  39. M.C. Prado, D. Jariwala, T.J. Marks, M.C. Hersam, Optimization of graphene dry etching conditions via combined microscopic and spectroscopic analysis. Appl. Phys. Lett. 102, 193111 (2013)

    Article  Google Scholar 

  40. A. Ballesio et al., A novel hot embossing graphene transfer process for flexible electronics. Microelectron. Eng. 209, 16–19 (2018)

    Article  Google Scholar 

  41. A.L. Rickard, M.E. McNie, in Characterization and Optimization of Deep Dry Etching for MEMS Applications, ed. by U. F. W. Behringer, D. G. Uttamchandani, (2001), pp. 78–88. https://doi.org/10.1117/12.425287

    Chapter  Google Scholar 

  42. N.N. Alias, K.A. Yaacob, S.N. Yusoh, A.M. Abdullah, Comparison of KOH and TMAH etching on Sinw arrays fabricated via AFM lithography. J. Phys. Conf. Ser. 1082, 012051 (2018)

    Article  Google Scholar 

  43. S.J. Fonash, ChemInform abstract: An overview of dry etching damage and contamination effects. ChemInform 22(21), 310 (2010)

    Google Scholar 

  44. A. Tommasi et al., Process optimisation of a MEMS based PZT actuated microswitch. Microelectron. Eng. 119, 137–140 (2014)

    Article  CAS  Google Scholar 

  45. J. Micallef, Beginning Design for 3D Printing (Apress, Berkeley, 2015). https://doi.org/10.1007/978-1-4842-0946-2

    Book  Google Scholar 

  46. N. van de Werken et al., Design considerations and modeling of fiber reinforced 3D printed parts. Compos. Part B Eng. 160, 684–692 (2019)

    Article  Google Scholar 

  47. S. Mckee et al., Microfabrication of polymer microneedle arrays using two-photon polymerization. J. Photochem. Photobiol. B Biol. 229, 112424 (2022)

    Article  CAS  Google Scholar 

  48. V. Bertana et al., 3D printing with the commercial UV-curable standard blend resin: Optimized process parameters towards the fabrication of tiny functional parts. Polymers (Basel). 11, 292 (2019)

    Article  Google Scholar 

  49. G. Scordo et al., A novel highly electrically conductive composite resin for stereolithography. Mater. Today Commun. 19, 12–17 (2019)

    Article  CAS  Google Scholar 

  50. F. Barbaresco, M. Cocuzza, C.F. Pirri, S.L. Marasso, Application of a micro free-flow electrophoresis 3D printed lab-on-a-chip for micro-nanoparticles analysis. Nano 10, 1277 (2020)

    CAS  Google Scholar 

  51. F. Perrucci et al., Optimization of a suspended two photon polymerized microfluidic filtration system. Microelectron. Eng. 195, 95–100 (2018)

    Article  CAS  Google Scholar 

  52. A. Massaccesi et al., Broadband dielectric transmitarray with scanning capabilities, in 13th European Conference on Antennas and Propagation, EuCAP 2019, (2019), pp. 11–12

    Google Scholar 

  53. M.K. Thompson et al., Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. – Manuf. Technol. 65, 737–760 (2016)

    Article  Google Scholar 

  54. N. Meisel, C. Williams, An investigation of key design for additive manufacturing constraints in multimaterial three-dimensional printing. J. Mech. Des. 137, 111406 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Luigi Marasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parmeggiani, M., Ballesio, A., Cocuzza, M., Marasso, S.L. (2022). Introduction to High-Resolution Manufacturing from 2D to 3D/4D Printing Technology Evolutions and Design Considerations. In: Marasso, S.L., Cocuzza, M. (eds) High Resolution Manufacturing from 2D to 3D/4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-031-13779-2_1

Download citation

Publish with us

Policies and ethics