Skip to main content

Mountain Landslides: An Overview of Common Types and Future Impacts

  • Chapter
  • First Online:
Montology Palimpsest

Part of the book series: Montology ((M,volume 1))

  • 322 Accesses

Abstract

This chapter begins by giving a brief overview of the forces involved in the geodynamics of mountains and mountain ranges, including the processes needed for the generation of mass movement processes. In the remaining parts of this chapter, the following issues associated with mountain landslides are addressed: the anatomy of landslides, common landslide materials, and landslide movement types, along with landslide causes and triggers. The purpose of the final section of this chapter is to reflect on the extent to which the increasing intensity of human activities on mountainscapes, particularly climate change and urbanization, has magnified potential disaster risk for downslope settlements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alcántara-Ayala, I. (2021a). Size matters: The impact of small, medium and large landslide disasters. In K. Sassa, M. Mikoš, S. Sassa, P. T. Bobrowsky, K. Takara, & K. Dang (Eds.), Understanding and reducing landslide disaster risk. WLF 2020. ICL contribution to landslide disaster risk reduction. Springer. https://doi.org/10.1007/978-3-030-60196-6_43

    Chapter  Google Scholar 

  • Alcántara-Ayala, I. (2021b). Integrated landslide disaster risk management (ILDRiM): The challenge to avoid the construction of new disaster risk. Environmental Hazards. https://doi.org/10.1080/17477891.2020.1810609

  • Alcántara-Ayala, I., & Geertsema, M. (2022). Landslides. In T. McGee & E. Penning-Rowsell (Eds.), The Routledge handbook of environmental hazards and society. Routledge.

    Google Scholar 

  • Alcántara-Ayala, I., Asefaw Berhe, A., Derry, L., Ganti, V., Horton, A. A., & Sub Sim, M. (2021). Reflections on earth surface research. Nature Reviews Earth & Environment, 2, 15–20. https://doi.org/10.1038/s43017-020-00125-9

    Article  Google Scholar 

  • Allen, S., Frey, H., Haeberli, W., Huggel, C., Chiarle, M., & Geertsema, M. (2022). Assessment principles for glacier and permafrost hazards in mountain regions. In Natural hazard science. Oxford University Press. https://doi.org/10.1093/acrefore/9780199389407.013.356

    Chapter  Google Scholar 

  • Cardona Arboleda, O. D., Carreño Tibaduiza, M. L., Mendes Arraiol, K. C., Alcántara-Ayala, I., & Saito, S. (2020). Slope instability and landslides. In J. M. Moreno, C. L. Defior, V. Barros, E. Calvo Buendía, J. A. Marengo, & U. Oswald Spring (Eds.), Adaptation to climate change risks in Ibero-American countries — RIOCCADAPT report. McGraw Hill. (In press, ISBN 9788448621667).

    Google Scholar 

  • Cardona, O., van Aalst, M., Birkmann, J., Fordham, M., McGregor, G., Perez, R., Pulwarty, R., Schipper, L., & Sinh, B. T. (2012). Determinants of risk: Exposure and vulnerability. In IPCC [Intergovernmental Panel on Climate Change], C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), Managing the risks of extreme events and disasters to advance climate change adaption. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (pp. 65–108). Cambridge University Press.

    Google Scholar 

  • Cannon, S. H. & Gartner, J. E. (2005). Wildfire related debris flow from a hazards perspective. In M. Jakob & O. Hungr (Eds.), Debris-flow hazards and related phenomena. M. Springer-Praxis, (pp. 321–344). Berlin, Germany.

    Google Scholar 

  • Carrivick, J. L., & Tweed, F. S. (2016). A global assessment of the societal impacts of glacier outburst floods. Global and Planetary Change, 144, 1–16.

    Article  Google Scholar 

  • Catane, S. G., Cabria, H. B., Zarco, M. A. H., Saturay, R. M., & Mirasol-Robert, A. A. (2008). The 17 February 2006 Guinsaugon rock slide-debris avalanche, Southern Leyte, Philippines: Deposit characteristics and failure mechanism. Bulletin of Engineering Geology and the Environment, 67(3), 305–320.

    Article  Google Scholar 

  • Chiarle, M., Geertsema, M., Mortara, G., & Clague, J. J. (2021). Relations between climate change and mass movement: Perspectives from the Canadian Cordillera and the European Alps. Global and Planetary Change, 202, 103499.

    Article  Google Scholar 

  • Clague, J. J., & O’Connor, J. E. (2021). Glacier-related outburst floods. In W. Haeberli & C. Whiteman (Eds.), Snow and ice-related hazards, risks, and disasters (pp. 467–499). Elsevier.

    Chapter  Google Scholar 

  • Cloutier, C., Locat, J., Geertsema, M., Jakob, M., & Schnorbus, M. (2017). Potential impacts of climate change on landslides occurrence in Canada. In Slope safety preparedness for impact of climate change (pp. 71–104). CRC Press.

    Chapter  Google Scholar 

  • Coe, J. A. (2020). Bellwether sites for evaluating changes in landslide frequency and magnitude in cryospheric mountainous terrain: A call for systematic, long-term observations to decipher the impact of climate change. Landslides, 17, 2483–2501.

    Article  Google Scholar 

  • Costa, J. E. & Schuster, R. L. (1988). The formation and failure of natural dams. Geological Society of America Bulletin, 100(7), 1054–1068.

    Google Scholar 

  • Corominas, J. (1996). The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33(2), 260–271.

    Article  Google Scholar 

  • Cruden, D. M. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology, 43(1), 27–29.

    Article  Google Scholar 

  • Cruden, D. M. (2003). The shapes of cold, high mountains in sedimentary rocks. Geomorphology, 55(1–4), 249–261.

    Article  Google Scholar 

  • Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. In Landslides: Investigation and Mitigation, Transportation Research Board, special report 247. National Academy of Science.

    Google Scholar 

  • Curran, M. P., Chapman, B., Hope, G. D. & Scott, D. (2006). Large scale erosion and flood after wild-fires: understanding the soil conditions. B.C. Min. For. Range, Res. Br., Victoria, B.C. Tech. Rep. No. 030.

    Google Scholar 

  • de Groot, W. J., Wotton, B. M., & Flannigan, M. D. (2015). Chapter 11 – Wildland fire danger rating and early warning systems. In J. F. Shroder & D. Paton (Eds.), Wildfire hazards, risks and disasters (pp. 207–228). Elsevier. https://doi.org/10.1016/B978-0-12-410434-1.00011-7

    Chapter  Google Scholar 

  • Delaney, K. B., & Evans, S. G. (2015). The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: Review, remote sensing analysis, and process modelling. Geomorphology, 246, 377–393.

    Article  Google Scholar 

  • Deline, P., Gruber, S., Amann, F., Bodin, X., Delaloye, R., Failletaz, J., Geertsema, M., Giardano, M., Hasler, A., Kirkbride, M., Krautblatter, M., Magnin, F., McColl, S., Ravanel, L., Schoenich, P., & Weber, S. (2021). Ice loss from glaciers and permafrost and related slope instability in high-mountain regions. In W. Haeberli & C. Whiteman (Eds.), Snow and ice-related hazards, risks, and disasters (pp. 501–540). Elsevier.

    Chapter  Google Scholar 

  • Di Napoli, M., Marsiglia, P., Di Martire, D., Ramondini, M., Ullo, S. L., & Calcaterra, D. (2020). Landslide susceptibility assessment of wildfire burnt areas through earth-observation techniques and a machine learning-based approach. Remote Sensing, 12(15), 2505.

    Article  Google Scholar 

  • Dufresne, A., & Davies, T. R. (2009). Longitudinal ridges in mass movement deposits. Geomorphology, 105(3–4), 171–181.

    Article  Google Scholar 

  • Dufresne, A., & Geertsema, M. (2020). Rock slide–debris avalanches: Flow transformation and hummock formation, examples from British Columbia. Landslides, 17(1), 15–32.

    Article  Google Scholar 

  • Fan, X., Juang, H., Wasowski, J., Huang, R., Qiang, X., Scaringi, G., va Westen, C., & Haveith, H. (2018). What have we learned from the 2008 Wenchuan earthquake and its aftermath: A decade of research and challenges? Engineering Geology, 241, 25–32.

    Article  Google Scholar 

  • Fasullo, J. T., Otto-Bliesner, B. L., & Stevenson, S. (2018). ENSO’s changing influence on temperature, precipitation, and wildfire in a warming climate. Geophysical Research Letters, 0. https://doi.org/10.1029/2018GL079022

  • Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18, 2161–2181.

    Article  Google Scholar 

  • Geertsema, M., & Cruden, D. M. (2014). Further travels in the Canadian Cordillera. In Proceedings, 6th Canadian conference on geohazards. Kingston, ON.

    Google Scholar 

  • Geertsema, M., Clague, J. J., Schwab, J. W. & Evans, S. G. (2006). An overview of recent large catastrophic landslides in northern British Columbia, Canada. Engineering Geology, 83(1–3), 120–143.

    Google Scholar 

  • Geertsema, M., & Pojar, J. J. (2007). Influence of landslides on biophysical diversity—A perspective from British Columbia. Geomorphology, 89(1–2), 55–69.

    Article  Google Scholar 

  • Geertsema, M., Highland, L. & Vaugeouis, L., (2009). Environmental impact of landslides. In Landslides–disaster risk reduction (pp. 589–607). Springer, Berlin, Heidelberg.

    Google Scholar 

  • Geertsema, M., Schwab, J. W., Jordan, P., Millard, T. H., & Rollerson, T. P. (2010). Chapter 8 – Hillslope processes. In: R. G. Pike, T. E. Redding, R. D. Moore, R. D. Winkler, & K. D. Bladon (Eds.), Compendium of Forest Hydrology and Geomorphology in British Columbia. B.C. Min. For. and Range, For. Sci. Prog., Victoria, B.C. and FORREX Forum for Research and Extension in Natural Resources, Kamloops, B.C. Land Manag. Handb (Vol. 66, pp. 213–273). Available from: http://www.for.gov.bc.ca/hfd/pubs/Docs/Lmh/Lmh66.htm

  • Gruber, S., & Haeberli, W. (2007). Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. Journal of Geophysical Research: Earth Surface, 112(F2), F02S18.

    Article  Google Scholar 

  • Gruber, S., Burn, C., Arenson, L., Geertsema, M., Harris, S., Smith, S., Bonnaventure, P., & Benkert, B. (2015). Permafrost in mountainous regions of Canada. In Proc. 68th Canadian Geotechnical Conference, 7th Canadian Permafrost Conference, Canadian Geotechnical Society (Vol. 25), Québec-City, QC, Canada.

    Google Scholar 

  • Guthrie, R. H., Mitchell, S. J., Lanquaye-Opoku, N., & Evans, S. G. (2010). Extreme weather and landslide initiation in coastal British Columbia. Quarterly Journal of Engineering Geology and Hydrogeology, 43(4), 417–428.

    Article  Google Scholar 

  • Haeberli, W., & Drenkhan, F. (2022). Future lake development in deglaciating mountain ranges. In Oxford research encyclopedia on natural hazard science. Oxford University Press.

    Google Scholar 

  • Hasler, A., Gruber, S., Font, M., & Dubois, A. (2011). Advective heat transport in frozen rock clefts: Conceptual model, laboratory experiments and numerical simulation. Permafrost and Periglacial Processes, 22(4), 378–389.

    Article  Google Scholar 

  • Hermanns, R., Niedermann, S., Ivy-Ochs, S., & Kubik, P. (2004). Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina) – Evidence from surface exposure dating and stratigraphic analyses. Landslides, 1(2), 113–122.

    Article  Google Scholar 

  • Highland, L., & Bobrowsky, P. T. (2008). The landslide handbook: A guide to understanding landslides (p. 129). US Geological Survey.

    Google Scholar 

  • Highland, L., & Bobrowsky, P. (2018). TXT-tool 0.001-2.1 landslide types: Descriptions, illustrations and photos. In Landslide dynamics: ISDR-ICL landslide interactive teaching tools (pp. 1–38). Springer.

    Google Scholar 

  • Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Al. Milner, U. M., Morin, S., Orlove, B., & Steltzer, H. (2019). High mountain areas. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer (Eds.), IPCC special report on the ocean and cryosphere in a changing climate. Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Huggel, C., Koruo, O., & Gruber, S. (2021). Landslide hazards and climate change in high mountains. In Treatise on geomorphology. Elsevier.

    Google Scholar 

  • Hungr, O. J. E. O., Corominas, J., & Eberhardt, E. (2005). Estimating landslide motion mechanism, travel distance and velocity. In Landslide risk management (pp. 109–138). CRC Press.

    Chapter  Google Scholar 

  • Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2), 167–194.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change Climate Change). (2014). Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland, 151 pp.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change Climate Change). (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H. -O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, & J. Malley (Eds.), In press.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change Climate Change). (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Press.

    Google Scholar 

  • Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35(3), 245–296.

    Article  Google Scholar 

  • Jakob, M., & Weatherly, H. (2003). A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology, 54(3–4), 137–156.

    Article  Google Scholar 

  • Jermyn, C., & Geertsema, M. (2015). An overview of some recent large landslide types in Nahanni National Park, Northwest Territories, Canada. In Engineering geology for society and territory (Vol. 1, pp. 315–320). Springer.

    Google Scholar 

  • Keefer, D. (1984). Landslides caused by earthquakes. GSA Bulletin, 95(4), 406–421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2

    Article  Google Scholar 

  • Kirschbaum, D. L., Watson, C. S., Rounce, D. R., Shugar, D. H., Kargel, J. S., Haritashya, U. K., Amatya, P., Shean, D., Anderson, E. R., & Jo, M. (2019). Remote sensing of cascading hazards over High Mountain Asia. Frontiers in Earth Science, 7, 197. https://doi.org/10.3389/feart.2019.00197

    Article  Google Scholar 

  • Korup, O. (2012). Landslides in the Earth system. IN J. Clague & D. Stead (Eds). Landslides: Types, Mechanisms and Modeling. (p. 10–23). Cambridge University Press, Cambridge.

    Google Scholar 

  • Korup, O. (2006). Rock-slope failure and the river long profile. Geology, 34(1), 45–48.

    Article  Google Scholar 

  • Korup, O., & Tweed, F. (2007). Ice, moraine, and landslide dams in mountainous terrain. Quaternary Science Reviews, 26(25–28), 3406–3422.

    Article  Google Scholar 

  • Korup, O., Densmore, A. L., & Schlunegger, F. (2010). The role of landslides in mountain range evolution. Geomorphology, 120(1–2), 77–90.

    Article  Google Scholar 

  • Krautblatter, M., Funk, D., & Günzel, F. K. (2013). Why permafrost rocks become unstable: A rock–ice-mechanical model in time and space. Earth Surface Processes and Landforms, 38(8), 876–887.

    Article  Google Scholar 

  • Locat, A., Demers, D., Locat, P., & Geertsema, M. (2017). Sensitive clay landslides in Canada. In Proceedings of the 70th Canadian Geotechnical Conference, Ottawa, Paper, 875(8).

    Google Scholar 

  • Myster, R. & Sarmiento, F. O. (1998). Seed inputs to microsite patch recovery on two Tropandean landslides in Ecuador. Restoration Ecology, 6(1), 1–10. https://doi.org/10.1046/j.1526-100x.1998.00615.x

  • Paguican, E. M. R., de Vries, B. V. W., & Lagmay, A. M. F. (2014). Hummocks: How they form and how they evolve in rockslide-debris avalanches. Landslides, 11(1), 67–80.

    Article  Google Scholar 

  • Parise, M., & Cannon, S. H. (2012). Wildfire impacts on the processes that generate debris flows in burned watersheds. Natural Hazards, 61(1), 217–227.

    Article  Google Scholar 

  • Pataki, D. E., et al. (2011). Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment, 9, 27–36. https://doi.org/10.1890/090220

    Article  Google Scholar 

  • Penna, I. M., Hermanns, R. L., Nicolet, P., Morken, O. A., Dehls, J., Gupta, V., & Jaboyedoff, M. (2021). Airblasts caused by large slope collapses. Bulletin, 133(5–6), 939–948.

    CAS  Google Scholar 

  • Pierson, T. C. (2005). Hyperconcentrated flow—Transitional process between water flow and debris flow. In Debris-flow hazards and related phenomena (pp. 159–202). Springer.

    Chapter  Google Scholar 

  • Pierson, T. C., Wood, N. J. & Driedger, C. L. (2014). Reducing risk from lahar hazards: concepts, case studies, and roles for scientists. Journal of Applied Volcanology, 3(1), 1–25.

    Google Scholar 

  • Rengers, F. K., McGuire, L. A., Oakley, N. S., Kean, J. W., Staley, D. M., & Tang, H. (2020). Landslides after wildfire: Initiation, magnitude, and mobility. Landslides, 17(11), 2631–2641.

    Article  Google Scholar 

  • Roverato, M. & Dufresne, A., (2021). Volcanic debris avalanches: introduction and book structure. In Volcanic Debris Avalanches (pp. 1–10). Springer, Cham.

    Google Scholar 

  • Royal Society. (2016). Resilience to extreme weather (124 pp). The Royal Society.

    Google Scholar 

  • Robichaud, P. R., Beyers, J. L. & Neary, D. G. (2000). Evaluating the effectiveness of post-fire rehabilitation treatments. U.S. Dep. Agric. For. Serv., Rocky Mtn. Res. Stn., Fort Collins, Colo. Gen. Tech. Rep. RMRS-GTR-63.

    Google Scholar 

  • Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N. K., & Stoffel, M. (2017). Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography, 41(1), 3–28.

    Article  Google Scholar 

  • Sakals, M. E., Geertsema, M., Schwab, J. W., & Foord, V. N. (2012). The Todagin Creek landslide of October 3, 2006, Northwest British Columbia, Canada. Landslides, 9(1), 107–115.

    Article  Google Scholar 

  • Sánchez-Rodríguez, R., Seto, K. C., Simon, D., Solecki, W. D., Kraas, F., & Laumann, G. (2005). Science plan urbanization and global environmental change. In IHDP Report 15, International Human Dimensions Programme on Global Environmental Change, Bonn, Germany.

    Google Scholar 

  • Schuster, R. L., & Highland, L. (2001). Socioeconomic and environmental impacts of landslides in the western hemisphere (pp. 1–50). US Department of the Interior, US Geological Survey.

    Google Scholar 

  • Shakesby, R. A. & Doerr, S. H. (2005). Wildfire as a hydrological and geomorphological agent. Earth Science Reviews, 74, 269–307.

    Google Scholar 

  • Scott, D. & Pike, R. (2003). Wildfires and watershed effects in the southern B.C. interior. Streamline Watershed Manag. Bull. 7(3), 1–4.

    Google Scholar 

  • Sidle, R. C., Greco, R., & Bogaard, T. (2019). Overview of landslide hydrology. Water, 11(1), 148. https://doi.org/10.3390/w11010148

    Article  Google Scholar 

  • Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11–33.

    Google Scholar 

  • Walker, L. R., & Shiels, A. B. (2012). Landslide ecology. Cambridge University Press.

    Book  Google Scholar 

  • Wolter, A., Stead, D., Ward, B. C., Clague, J. J., & Ghirotti, M. (2016). Engineering geomorphological characterisation of the Vajont Slide, Italy, and a new interpretation of the chronology and evolution of the landslide. Landslides, 13(5), 1067–1081.

    Article  Google Scholar 

  • Worni, R., Huggel, C., Clague, J. J., Schaub, Y., & Stoffel, M. (2014). Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective. Geomorphology, 224, 161–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten Geertsema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geertsema, M., Alcántara-Ayala, I. (2022). Mountain Landslides: An Overview of Common Types and Future Impacts. In: Sarmiento, F.O. (eds) Montology Palimpsest. Montology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-13298-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13298-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13297-1

  • Online ISBN: 978-3-031-13298-8

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics