Skip to main content

Microenvironment of Cancer Stem Cells

  • Chapter
  • First Online:
Cancer Stem Cell Markers and Related Network Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1393))

Abstract

Microenvironment of cancer stem cells (CSCs) consists of a variety of cells and inter-cellular matrix and communications of the components. The microenvironment of CSCs maintains the stemness feature of the CSCs. Several cell types which communicate each other via signaling molecules surrounding CSCs are main factors of the CSC microenvironment. A key question is “What kind of information the cells exchange in the CSC microenvironment?” to reveal the microenvironment and CSC features. Components and molecular markers of CSC microenvironment, signaling cross-talks in CSC microenvironment, and targeting CSC microenvironment are focused in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell AN, Johnson GL (2014) Implications of mesenchymal cells in cancer stem cell populations: relevance to EMT. Curr Pathobiol Rep 2(1):21–26. https://doi.org/10.1007/s40139-013-0034-7

    Article  Google Scholar 

  • Affolter A, Lammert A, Kern J, Scherl C, Rotter N (2021) Precision medicine gains momentum: novel 3D models and stem cell-based approaches in head and neck cancer. Front Cell Dev Biol 9:666515. https://doi.org/10.3389/fcell.2021.666515

    Article  Google Scholar 

  • Agrawal V, Maharjan S, Kim K, Kim NJ, Son J, Lee K, Choi HJ, Rho SS, Ahn S, Won MH, Ha SJ, Koh GY, Kim YM, Suh YG, Kwon YG (2014) Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice. Oncotarget 5(9):2761–2777. https://doi.org/10.18632/oncotarget.1942

    Article  Google Scholar 

  • Al-Khalaf HH, Ghebeh H, Inass R, Aboussekhra A (2019) Senescent breast luminal cells promote carcinogenesis through interleukin-8-dependent activation of stromal fibroblasts. Mol Cell Biol 39(2). https://doi.org/10.1128/mcb.00359-18

  • Arneth B (2019) Tumor microenvironment. Medicina (Kaunas) 56(1). https://doi.org/10.3390/medicina56010015

  • Balic A, Sørensen MD, Trabulo SM, Sainz B Jr, Cioffi M, Vieira CR, Miranda-Lorenzo I, Hidalgo M, Kleeff J, Erkan M, Heeschen C (2014) Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol Cancer Ther 13(7):1758–1771. https://doi.org/10.1158/1535-7163.Mct-13-0948

    Article  CAS  Google Scholar 

  • Beacham DA, Cukierman E (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15(5):329–341. https://doi.org/10.1016/j.semcancer.2005.05.003

    Article  Google Scholar 

  • Bhattacharya SD, Mi Z, Talbot LJ, Guo H, Kuo PC (2012) Human mesenchymal stem cell and epithelial hepatic carcinoma cell lines in admixture: concurrent stimulation of cancer-associated fibroblasts and epithelial-to-mesenchymal transition markers. Surgery 152(3):449–454. https://doi.org/10.1016/j.surg.2012.06.011

    Article  Google Scholar 

  • Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7(1):17–23. https://doi.org/10.1016/j.ccr.2004.12.013

    Article  CAS  Google Scholar 

  • Buhrmann C, Kraehe P, Lueders C, Shayan P, Goel A, Shakibaei M (2014) Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: potential role of EMT. PLoS ONE 9(9):e107514. https://doi.org/10.1371/journal.pone.0107514

    Article  CAS  Google Scholar 

  • Cardoso F, Costa A, Norton L, Senkus E, Aapro M, André F, Barrios CH, Bergh J, Biganzoli L, Blackwell KL, Cardoso MJ, Cufer T, El Saghir N, Fallowfield L, Fenech D, Francis P, Gelmon K, Giordano SH, Gligorov J, Goldhirsch A, Harbeck N, Houssami N, Hudis C, Kaufman B, Krop I, Kyriakides S, Lin UN, Mayer M, Merjaver SD, Nordström EB, Pagani O, Partridge A, Penault-Llorca F, Piccart MJ, Rugo H, Sledge G, Thomssen C, Van’t Veer L, Vorobiof D, Vrieling C, West N, Xu B, Winer E (2014) ESO-ESMO 2nd international consensus guidelines for advanced breast cancer (ABC2)†. Ann Oncol 25(10):1871–1888. https://doi.org/10.1093/annonc/mdu385

    Article  CAS  Google Scholar 

  • Cardoso F, Costa A, Senkus E, Aapro M, André F, Barrios CH, Bergh J, Bhattacharyya G, Biganzoli L, Cardoso MJ, Carey L, Corneliussen-James D, Curigliano G, Dieras V, El Saghir N, Eniu A, Fallowfield L, Fenech D, Francis P, Gelmon K, Gennari A, Harbeck N, Hudis C, Kaufman B, Krop I, Mayer M, Meijer H, Mertz S, Ohno S, Pagani O, Papadopoulos E, Peccatori F, Penault-Llorca F, Piccart MJ, Pierga JY, Rugo H, Shockney L, Sledge G, Swain S, Thomssen C, Tutt A, Vorobiof D, Xu B, Norton L, Winer E (2017) 3rd ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 3). Ann Oncol 28(1):16–33. https://doi.org/10.1093/annonc/mdw544

    Article  CAS  Google Scholar 

  • Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, André F, Harbeck N, Aguilar Lopez B, Barrios CH, Bergh J, Biganzoli L, Boers-Doets CB, Cardoso MJ, Carey LA, Cortés J, Curigliano G, Diéras V, El Saghir NS, Eniu A, Fallowfield L, Francis PA, Gelmon K, Johnston SRD, Kaufman B, Koppikar S, Krop IE, Mayer M, Nakigudde G, Offersen BV, Ohno S, Pagani O, Paluch-Shimon S, Penault-Llorca F, Prat A, Rugo HS, Sledge GW, Spence D, Thomssen C, Vorobiof DA, Xu B, Norton L, Winer EP (2018) 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4)†. Ann Oncol 29(8):1634–1657. https://doi.org/10.1093/annonc/mdy192

    Article  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. https://doi.org/10.1038/nature10144

    Article  CAS  Google Scholar 

  • Chang YS, Jalgaonkar SP, Middleton JD, Hai T (2017) Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proc Natl Acad Sci USA 114(34):E7159–e7168. https://doi.org/10.1073/pnas.1700455114

    Article  CAS  Google Scholar 

  • Chen L, Mizutani A, Kasai T, Yan T, Jin G, Vaidyanath A, El-Aarag BY, Liu Y, Kudoh T, Salomon DS, Fu L, Seno M (2014) Mouse induced pluripotent stem cell microenvironment generates epithelial-mesenchymal transition in mouse Lewis lung cancer cells. Am J Cancer Res 4(1):80–88

    CAS  Google Scholar 

  • Cheng F, Pekkonen P, Laurinavicius S, Sugiyama N, Henderson S, Günther T, Rantanen V, Kaivanto E, Aavikko M, Sarek G, Hautaniemi S, Biberfeld P, Aaltonen L, Grundhoff A, Boshoff C, Alitalo K, Lehti K, Ojala PM (2011) KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell Host Microbe 10(6):577–590. https://doi.org/10.1016/j.chom.2011.10.011

    Article  CAS  Google Scholar 

  • Ciummo SL, D’Antonio L, Sorrentino C, Fieni C, Lanuti P, Stassi G, Todaro M, Di Carlo E (2021) The C-X-C motif chemokine ligand 1 sustains breast cancer stem cell self-renewal and promotes tumor progression and immune escape programs. Front Cell Dev Biol 9:689286. https://doi.org/10.3389/fcell.2021.689286

    Article  Google Scholar 

  • Clawson GA, Matters GL, Xin P, Imamura-Kawasawa Y, Du Z, Thiboutot DM, Helm KF, Neves RI, Abraham T (2015) Macrophage-tumor cell fusions from peripheral blood of melanoma patients. PLoS ONE 10(8):e0134320. https://doi.org/10.1371/journal.pone.0134320

    Article  CAS  Google Scholar 

  • Crawford Y, Ferrara N (2009) Tumor and stromal pathways mediating refractoriness/resistance to anti-angiogenic therapies. Trends Pharmacol Sci 30(12):624–630. https://doi.org/10.1016/j.tips.2009.09.004

    Article  CAS  Google Scholar 

  • Croker AK, Allan AL (2008) Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 12(2):374–390. https://doi.org/10.1111/j.1582-4934.2007.00211.x

    Article  CAS  Google Scholar 

  • de Neergaard M, Kim J, Villadsen R, Fridriksdottir AJ, Rank F, Timmermans-Wielenga V, Langerød A, Børresen-Dale AL, Petersen OW, Rønnov-Jessen L (2010) Epithelial-stromal interaction 1 (EPSTI1) substitutes for peritumoral fibroblasts in the tumor microenvironment. Am J Pathol 176(3):1229–1240. https://doi.org/10.2353/ajpath.2010.090648

    Article  CAS  Google Scholar 

  • Donnarumma E, Fiore D, Nappa M, Roscigno G, Adamo A, Iaboni M, Russo V, Affinito A, Puoti I, Quintavalle C, Rienzo A, Piscuoglio S, Thomas R, Condorelli G (2017) Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 8(12):19592–19608. https://doi.org/10.18632/oncotarget.14752

    Article  Google Scholar 

  • Eun K, Ham SW, Kim H (2017) Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep 50(3):117–125. https://doi.org/10.5483/bmbrep.2017.50.3.222

    Article  CAS  Google Scholar 

  • Gandellini P, Giannoni E, Casamichele A, Taddei ML, Callari M, Piovan C, Valdagni R, Pierotti MA, Zaffaroni N, Chiarugi P (2014) miR-205 hinders the malignant interplay between prostate cancer cells and associated fibroblasts. Antioxid Redox Signal 20(7):1045–1059. https://doi.org/10.1089/ars.2013.5292

    Article  CAS  Google Scholar 

  • Gillies RJ, Brown JS, Anderson ARA, Gatenby RA (2018) Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat Rev Cancer 18(9):576–585. https://doi.org/10.1038/s41568-018-0030-7

    Article  CAS  Google Scholar 

  • Gómez-Abenza E, Ibáñez-Molero S, García-Moreno D, Fuentes I, Zon LI, Mione MC, Cayuela ML, Gabellini C, Mulero V (2019) Zebrafish modeling reveals that SPINT1 regulates the aggressiveness of skin cutaneous melanoma and its crosstalk with tumor immune microenvironment. J Exp Clin Cancer Res 38(1):405. https://doi.org/10.1186/s13046-019-1389-3

    Article  CAS  Google Scholar 

  • Gurzu S, Kobori L, Fodor D, Jung I (2019) Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: a review. Biomed Res Int 2019:2962580. https://doi.org/10.1155/2019/2962580

    Article  CAS  Google Scholar 

  • Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323. https://doi.org/10.1016/j.stem.2007.06.002

    Article  CAS  Google Scholar 

  • Hong W, Xue M, Jiang J, Zhang Y, Gao X (2020) Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res 39(1):149. https://doi.org/10.1186/s13046-020-01648-1

    Article  CAS  Google Scholar 

  • Hsu JM, Xia W, Hsu YH, Chan LC, Yu WH, Cha JH, Chen CT, Liao HW, Kuo CW, Khoo KH, Hsu JL, Li CW, Lim SO, Chang SS, Chen YC, Ren GX, Hung MC (2018) STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun 9(1):1908. https://doi.org/10.1038/s41467-018-04313-6

    Article  CAS  Google Scholar 

  • Huang L, Xu AM, Liu S, Liu W, Li TJ (2014) Cancer-associated fibroblasts in digestive tumors. World J Gastroenterol 20(47):17804–17818. https://doi.org/10.3748/wjg.v20.i47.17804

    Article  CAS  Google Scholar 

  • Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY (2020) Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics 10(19):8721–8743. https://doi.org/10.7150/thno.41648

    Article  CAS  Google Scholar 

  • Kim SD, Baik JS, Lee JH, Mun SW, Yi JM, Park MT (2020) The malignancy of liver cancer cells is increased by IL-4/ERK/AKT signaling axis activity triggered by irradiated endothelial cells. J Radiat Res 61(3):376–387. https://doi.org/10.1093/jrr/rraa002

    Article  CAS  Google Scholar 

  • Li P, Shan JX, Chen XH, Zhang D, Su LP, Huang XY, Yu BQ, Zhi QM, Li CL, Wang YQ, Tomei S, Cai Q, Ji J, Li JF, Chouchane L, Yu YY, Sun FZ, Xu ZH, Liu BY, Zhu ZG (2015) Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment. Cell Res 25(5):588–603. https://doi.org/10.1038/cr.2015.51

    Article  CAS  Google Scholar 

  • López-Gil JC, Martin-Hijano L, Hermann PC, Sainz B Jr (2021) The CXCL12 crossroads in cancer stem cells and their niche. Cancers (Basel) 13(3). https://doi.org/10.3390/cancers13030469

  • Mansour H, Hassan G, Afify SM, Yan T, Seno A, Seno M (2020) Metastasis model of cancer stem cell-derived tumors. Methods Protoc 3(3). https://doi.org/10.3390/mps3030060

  • Markopoulos GS, Roupakia E, Marcu KB, Kolettas E (2019) Epigenetic regulation of inflammatory cytokine-induced epithelial-to-mesenchymal cell transition and cancer stem cell generation. Cells 8(10). https://doi.org/10.3390/cells8101143

  • McDonald LT, LaRue AC (2012) Hematopoietic stem cell derived carcinoma-associated fibroblasts: a novel origin. Int J Clin Exp Pathol 5(9):863–873

    Google Scholar 

  • McDonald PC, Chafe SC, Dedhar S (2016) Overcoming hypoxia-mediated tumor progression: combinatorial approaches targeting pH regulation, angiogenesis and immune dysfunction. Front Cell Dev Biol 4:27. https://doi.org/10.3389/fcell.2016.00027

    Article  Google Scholar 

  • Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 72(9):3585–3589. https://doi.org/10.1073/pnas.72.9.3585

    Article  CAS  Google Scholar 

  • Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, Chouaib S (2015) Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol 309(9):C569–579. https://doi.org/10.1152/ajpcell.00207.2015

  • Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP (2016) Cancer stem cell metabolism. Breast Cancer Res 18(1):55. https://doi.org/10.1186/s13058-016-0712-6

    Article  CAS  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. https://doi.org/10.1016/j.cell.2011.08.039

    Article  CAS  Google Scholar 

  • Prasetyanti PR, Medema JP (2017) Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 16(1):41. https://doi.org/10.1186/s12943-017-0600-4

    Article  CAS  Google Scholar 

  • Reyes-Ramos AM, Ramos-Cruz KP, Rodríguez-Merced NJ, Martínez-Montemayor MM, Franqui-Ríos ND, Ríos-Grant JP, Flores A, Maldonado-Martínez G, Torres-García W, Domenech M (2019) Mesenchymal cells support the oncogenicity and therapeutic response of the hedgehog pathway in triple-negative breast cancer. Cancers (Basel) 11(10). https://doi.org/10.3390/cancers11101522

  • Rocha S, Teles SP, Azevedo M, Oliveira P, Carvalho J, Oliveira C (2019) Gastric cancer extracellular vesicles tune the migration and invasion of epithelial and mesenchymal cells in a histotype-dependent manner. Int J Mol Sci 20(11). https://doi.org/10.3390/ijms20112608

  • Sasaki R, Devhare P, Ray RB, Ray R (2017) Hepatitis C virus-induced tumor-initiating cancer stem-like cells activate stromal fibroblasts in a xenograft tumor model. Hepatology 66(6):1766–1778. https://doi.org/10.1002/hep.29346

    Article  CAS  Google Scholar 

  • Saviano A, Roehlen N, Virzì A, Roca Suarez AA, Hoshida Y, Lupberger J, Baumert TF (2019) Stromal and immune drivers of hepatocarcinogenesis. In: Hoshida Y (ed) Hepatocellular carcinoma: translational precision medicine approaches. Humana Press. Copyright 2019, Springer Nature Switzerland AG, Cham (CH), pp 317–331. https://doi.org/10.1007/978-3-030-21540-8_15

  • Soundararajan R, Fradette JJ, Konen JM, Moulder S, Zhang X, Gibbons DL, Varadarajan N, Wistuba, II, Tripathy D, Bernatchez C, Byers LA, Chang JT, Contreras A, Lim B, Parra ER, Roarty EB, Wang J, Yang F, Barton M, Rosen JM, Mani SA (2019) Targeting the interplay between epithelial-to-mesenchymal-transition and the immune system for effective immunotherapy. Cancers (Basel) 11(5). https://doi.org/10.3390/cancers11050714

  • Su S, Chen J, Yao H, Liu J, Yu S, Lao L, Wang M, Luo M, Xing Y, Chen F, Huang D, Zhao J, Yang L, Liao D, Su F, Li M, Liu Q, Song E (2018) CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172(4):841–856.e816. https://doi.org/10.1016/j.cell.2018.01.009

    Article  CAS  Google Scholar 

  • Sun B, Zhang D, Zhao N, Zhao X (2017) Epithelial-to-endothelial transition and cancer stem cells: two cornerstones of vasculogenic mimicry in malignant tumors. Oncotarget 8(18):30502–30510. https://doi.org/10.18632/oncotarget.8461

    Article  Google Scholar 

  • Tanabe S, Quader S, Cabral H, Ono R (2020) Interplay of EMT and CSC in cancer and the potential therapeutic strategies. Front Pharmacol 11:904. https://doi.org/10.3389/fphar.2020.00904

    Article  CAS  Google Scholar 

  • Valeta-Magara A, Gadi A, Volta V, Walters B, Arju R, Giashuddin S, Zhong H, Schneider RJ (2019) Inflammatory breast cancer promotes development of M2 tumor-associated macrophages and cancer mesenchymal cells through a complex chemokine network. Cancer Res 79(13):3360–3371. https://doi.org/10.1158/0008-5472.Can-17-2158

    Article  CAS  Google Scholar 

  • Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013. https://doi.org/10.1200/jco.2013.50.9984

    Article  Google Scholar 

  • Wu CT, Huang YC, Chen WC, Chen MF (2019) Effect of tumor burden on tumor aggressiveness and immune modulation in prostate cancer: association with IL-6 signaling. Cancers (Basel) 11(7). https://doi.org/10.3390/cancers11070992

  • Xu K, Tian X, Oh SY, Movassaghi M, Naber SP, Kuperwasser C, Buchsbaum RJ (2016) The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis. Breast Cancer Res 18(1):14. https://doi.org/10.1186/s13058-016-0674-8

    Article  CAS  Google Scholar 

  • Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610. https://doi.org/10.1016/j.cell.2007.08.006

    Article  CAS  Google Scholar 

  • Zaarour RF, Prasad P, Venkatesh GH, Khouzam RA, Amirtharaj F, Zeinelabdin N, Rifath A, Terry S, Nawafleh H, El Sayed Y, Chouaib S (2021) Waterpipe smoke condensate influences epithelial to mesenchymal transition and interferes with the cytotoxic immune response in non-small cell lung cancer cell lines. Oncol Rep 45(3):879–890. https://doi.org/10.3892/or.2021.7938

    Article  CAS  Google Scholar 

  • Zhang Q, Chai S, Wang W, Wan C, Zhang F, Li Y, Wang F (2019) Macrophages activate mesenchymal stem cells to acquire cancer-associated fibroblast-like features resulting in gastric epithelial cell lesions and malignant transformation in vitro. Oncol Lett 17(1):747–756. https://doi.org/10.3892/ol.2018.9703

    Article  CAS  Google Scholar 

  • Zhu L, Yu X, Wang L, Liu J, Qu Z, Zhang H, Li L, Chen J, Zhou Q (2021) Angiogenesis and immune checkpoint dual blockade in combination with radiotherapy for treatment of solid cancers: opportunities and challenges. Oncogenesis 10(7):47–47. https://doi.org/10.1038/s41389-021-00335-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Agency for Medical Research and Development (AMED), Grant Number JP21mk0101216, JP22mk0101216, JSPS KAKENHI Grant Number 21K12133, and Ministry of Health, Labor, and Welfare (MHLW). The author would like to thank all collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihori Tanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanabe, S. (2022). Microenvironment of Cancer Stem Cells. In: Tanabe, S. (eds) Cancer Stem Cell Markers and Related Network Pathways. Advances in Experimental Medicine and Biology, vol 1393. Springer, Cham. https://doi.org/10.1007/978-3-031-12974-2_5

Download citation

Publish with us

Policies and ethics