Skip to main content

Polymeric Micelles for Targeted Drug Delivery Systems

  • Chapter
  • First Online:
Pharmaceutical Nanobiotechnology for Targeted Therapy

Abstract

Polymeric micelles exhibit several features that favor their use for drug delivery applications. Although micellar structures have been studied for about 100 years, they are still considered peculiar objects of physicochemical research.

Micelles are nanosized colloidal particles with a hydrophobic inner part (core) and a hydrophilic surface (shell). Drugs and contrast agents can either be embedded in the lipid core of a micelle or covalently bind to its surface. Bifunctional polymeric micelles have been described that are used for simultaneous drug delivery and visualization of damaged tissue. The most important advantage of polymeric micelles is their ability to solubilize poorly water-soluble or hydrophobic drugs within their core, thus enhancing their bioavailability. Based on the type of intermolecular force driving micelle formation, block copolymer micelles can be divided into several categories, including hydrophobically assembled amphiphilic micelles, polyion complex micelles, and micelles stemming from metal complexation. Micelles are advantageous as nanocarriers for drug delivery and treatments owing to their excellent physicochemical properties, drug loading and release capacities, facile preparation methods, biocompatibility, and tumor targetability.

The current line of research in this area is to generate heterogeneous polymeric nanostructures with controlled composition, hydrophilic-hydrophobic balance, and properties. This chapter will consider the existing approaches to preparing polymer micelles for drug delivery applications, the complexity of working with them, and the prospects for their use in therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

AuNPs:

Gold nanoparticles

CDs:

Cyclodextrins

CMC:

Critical micelle concentration

DDS:

Drug delivery system

DOX:

Doxorubicin

PBLG:

Poly(γ-benzyl L-glutamate)

PEG:

Polyethylene glycol

PEG–PLA:

Polyethylene glycol–polylactide

RES:

Reticuloendothelial system

References

  1. Maehle AH. “Receptive substances”: John Newport Langley (1852–1925) and his path to a receptor theory of drug action. Med Hist. 2004;48(2):153–74. https://doi.org/10.1017/s0025727300000090.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bosch F, Rosich L. The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize. Pharmacology. 2008;82(3):171–9. https://doi.org/10.1159/000149583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2–11. https://doi.org/10.4103/2230-973X.96920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elvira C, Gallardo A, Roman JS, Cifuentes A. Covalent polymer-drug conjugates. Molecules (Basel, Switzerland). 2005;10(1):114–25. https://doi.org/10.3390/10010114.

    Article  CAS  Google Scholar 

  5. Ferraris C, Rimicci C, Garelli S, Ugazio E, Battaglia L. Nanosystems in cosmetic products: a brief overview of functional, market. Regul Saf Concerns Pharm. 2021;13:1408. https://doi.org/10.3390/pharmaceutics13091408.

    Article  CAS  Google Scholar 

  6. Zhu M, Whittaker AK, Han FY, Smith MT. Journey to the market: the evolution of biodegradable drug delivery systems. Appl Sci. 2022;12:935. https://doi.org/10.3390/app12020935.

    Article  CAS  Google Scholar 

  7. Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020;383:2439–50. https://doi.org/10.1056/NEJMoa2027906.

    Article  CAS  PubMed  Google Scholar 

  8. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384:403–16. https://doi.org/10.1056/NEJMoa2035389.

    Article  CAS  PubMed  Google Scholar 

  9. Leung SSF, Mijalkovic J, Borrelli K, Jacobson MP. Testing physical models of passive membrane permeation. J Chem Inf Model. 2012;52(6):1621–36. https://doi.org/10.1021/ci200583t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leung SSF, Sindhikara D, Jacobson MP. Simple predictive models of passive membrane permeability incorporating size-dependent membrane-water partition. J Chem Inf Model. 2016;56(5):924–9. https://doi.org/10.1021/acs.jcim.6b00005.

    Article  CAS  PubMed  Google Scholar 

  11. Sharifian GM. Recent experimental developments in studying passive membrane transportof drug molecules. Mol Pharm. 2021;18(6):2122–41. https://doi.org/10.1021/acs.molpharmaceut.1c0.

    Article  Google Scholar 

  12. Marsh D. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys J. 2007;93(11):3884–99. https://doi.org/10.1529/biophysj.107.107938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gullingsrud J, Schulten K. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J. 2004;86(6):3496–509.

    Article  CAS  Google Scholar 

  14. Lindahl E, Edholm O. Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J Chem Phys. 2000;113:3882–93.

    Article  CAS  Google Scholar 

  15. Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, Ataeijannati Y, Sun X, Dong L, Li T, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun. 2017;8:14716. https://doi.org/10.1038/ncomms14716.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7. https://doi.org/10.1126/science.1247005.

    Article  CAS  PubMed  Google Scholar 

  17. Humphreys IR, Sebastian S. Novel viral vectors in infectious diseases. Immunology. 2018;153:1–9. https://doi.org/10.1111/imm.12829.

    Article  CAS  PubMed  Google Scholar 

  18. Lehrman S. Virus treatment questioned after gene therapy death. Nature. 1999;401:517–8. https://doi.org/10.1038/43977.

    Article  CAS  PubMed  Google Scholar 

  19. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–58. https://doi.org/10.1038/nrg1066.

    Article  CAS  PubMed  Google Scholar 

  20. Ahi YS, Bangari DS, Mittal SK. Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther. 2011;11(4):307–20. https://doi.org/10.2174/156652311796150372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials. 2018;171:207–18. https://doi.org/10.1016/j.biomaterials.2018.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Ren T, Gou J, Zhang L, Tao X, Tian B, Tian P, Yu D, Song J, Liu X, et al. Strategies for improving the payload of small molecular drugs in polymeric micelles. J Control Release. 2017;261:352–66. https://doi.org/10.1016/j.jconrel.2017.01.047.

    Article  CAS  PubMed  Google Scholar 

  23. Sung Y, Kim S. Recent advances in the development of gene delivery systems. Biomater Res. 2019;23:8. https://doi.org/10.1186/s40824-019-0156-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther. 2015;26(7):452–62. https://doi.org/10.1089/hum.2015.069.

    Article  CAS  PubMed  Google Scholar 

  25. Wang M, Cheng Y. The effect of fluorination on the transfection efficacy of surface-engineered dendrimers. Biomaterials. 2014;35(24):6603–13. https://doi.org/10.1016/j.biomaterials.2014.04.065.

    Article  CAS  PubMed  Google Scholar 

  26. Zinchenko A. DNA conformational behavior and compaction in biomimetic systems: toward better understanding of DNA packaging in cell. Adv Colloid Interf Sci. 2016;232:70–9. https://doi.org/10.1016/j.cis.2016.02.005.

    Article  CAS  Google Scholar 

  27. Jeong GW, Nah JW. Evaluation of disulfide bond-conjugated LMWSC-g-bPEI as non-viral vector for low cytotoxicity and efficient gene delivery. Carbohydr Polym. 2017;178:322–30. https://doi.org/10.1016/j.carbpol.2017.09.048.

    Article  CAS  PubMed  Google Scholar 

  28. Vijayanathan V, Agostinelli E, Thomas T, Thomas TJ. Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy. Amino Acids. 2014;46(3):499–509. https://doi.org/10.1007/s00726-013-1549-2.

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi Y, Chen Q, Rajala RVS, Ma JX. MicroRNA-184 modulates canonical Wnt signaling through the regulation of frizzled-7 expression in the retina with ischemia-induced neovascularization. FEBS Lett. 2015;589(10):1143–9. https://doi.org/10.1016/j.febslet.2015.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C, Karagiannis E, Love K, Chen D, Zoncu R, Buganim Y, Schroeder A, Langer R, Anderson DG. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol. 2013;31(7):653–8. https://doi.org/10.1038/nbt.2614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interf Sci. 2018;253:117–40. https://doi.org/10.1016/j.cis.2017.12.006.

    Article  CAS  Google Scholar 

  32. Hong SJ, Ahn MH, Sangshetti J, Choung PH, Arote RB. Sugar-based gene delivery systems: current knowledge and new perspectives. Carbohydr Polym. 2018;181:1180–93. https://doi.org/10.1016/j.carbpol.2017.11.105.

    Article  CAS  PubMed  Google Scholar 

  33. Wang P, Lin L, Guo Z, Chen J, Tian H, Chen X, Yang H. Highly fluorescent gene carrier based on Ag-Au alloy nanoclusters. Macromol Biosci. 2016;16:160–7. https://doi.org/10.1002/mabi.201500235.

    Article  CAS  PubMed  Google Scholar 

  34. Ren S, Wang M, Wang C, Wang Y, Sun C, Zeng Z, Cui H, Zhao X. Application of non-viral vectors in drug delivery and gene therapy. Polymers. 2021;13:3307. https://doi.org/10.3390/polym13193307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ashfaq UA, Riaz M, Yasmeen E, Yousaf MZ. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst. 2017;34:317–53. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2017017845.

    Article  PubMed  Google Scholar 

  36. Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, Celik E, Leblanc RM. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer. 2019;1871:419–33. https://doi.org/10.1016/j.bbcan.2019.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133–49. https://doi.org/10.2147/ijn.s596.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fu J, Wang D, Mei D, Zhang H, Wang Z, He B, Dai W, Zhang H, Wang X, Zhang Q. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release. 2015;204:11–9. https://doi.org/10.1016/j.jconrel.2015.01.039.

    Article  CAS  PubMed  Google Scholar 

  39. Evangelopoulos M, Yazdi IK, Acciardo S, Palomba R, Giordano F, Pasto A, Sushnitha M, Martinez JO, Basu N, Torres A, Hmaidan S, Parodi A, Tasciotti E. Biomimetic cellular vectors for enhancing drug delivery to the lungs. Sci Rep. 2020;10(1):172. https://doi.org/10.1038/s41598-019-55909-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaneda Y. New vector innovation for drug delivery: development of fusigenic non-viral particles. Curr Drug Targets. 2003;4(8):599–602. https://doi.org/10.2174/1389450033490740.

    Article  CAS  PubMed  Google Scholar 

  41. Shirinsky VP. Liposome. In: Glossary of nanotechnology and related terms. http://thesaurus.rusnano.com/wiki/article1075.

  42. Norvaisas P, Kojic M, Milosevic M, Ziemys A. Prediction and analysis of drug delivery systems: from drug-vector compatibility to release kinetics. Scientifically speaking September 2013. Conference: CRS Newsletter for 41st annual meeting & exposition of the Controlled Release Society. At: 14–15, vol. 30(5).

    Google Scholar 

  43. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22. https://doi.org/10.1126/science.1095833.

    Article  CAS  PubMed  Google Scholar 

  44. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8(6):2101–41. https://doi.org/10.1021/mp200394t.

    Article  CAS  PubMed  Google Scholar 

  45. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Del Rev. 2011;63(3):136–51. https://doi.org/10.1016/j.addr.2010.04.009.

    Article  CAS  Google Scholar 

  46. Jubeli E, Moine L, Vergnaud-Gauduchon J, Barratt G. E-selectin as a target for drug delivery and molecular imaging. J Control Release. 2012;158(2):194–206. https://doi.org/10.1016/j.jconrel.2011.09.084.

    Article  CAS  PubMed  Google Scholar 

  47. Maruyama K, Takizawa T, Yuda T, Kennel SJ, Huang L, Iwatsuru M. Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. Biochim Biophys Acta. 1995;1234(1):74–80. https://doi.org/10.1016/0005-2736(94)00263-o.

    Article  PubMed  Google Scholar 

  48. Mu LM, Ju RJ, Liu R, Bu YZ, Zhang JY, Li XQ, Zeng F, Lu WL. Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev. 2017;115:46–56. https://doi.org/10.1016/j.addr.2017.04.006.

    Article  CAS  PubMed  Google Scholar 

  49. Chen М, Ma Q-R, Lu W-L. Coupling methods of antibodies and ligands for liposomes. Biomaterial engineering. In: Liposome-based drug delivery systems. Berlin, Heidelberg: Springer; 2021. p. 143–66.

    Chapter  Google Scholar 

  50. Yu Y, Wang ZH, Zhang L, Yao HJ, Zhang Y, Li RJ, Ju RJ, Wang XX, Zhou J, Li N, Lu WL. Mitochondrial targeting topotecan-loaded liposomes for treating drug-resistant breast cancer and inhibiting invasive metastases of melanoma. Biomaterials. 2012;33(6):1808–20. https://doi.org/10.1016/j.biomaterials.2011.10.085.

    Article  CAS  PubMed  Google Scholar 

  51. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20. https://doi.org/10.1021/nn900002m.

    Article  CAS  PubMed  Google Scholar 

  52. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205. https://doi.org/10.1016/j.jconrel.2011.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grobmyer SR, Moudgil BM, Grobmyer SR, Moudgil BM. Cancer nanotechnology: methods and protocols. Methods in molecular biology, vol. 624. Totowa: Humana Press; 2010.

    Book  Google Scholar 

  54. Prokop A. Intracellular delivery: fundamentals and applications: fundamental biomedical technologies, vol. 5. Dordrecht: Springer Netherlands; 2011.

    Book  Google Scholar 

  55. De Villiers MM, Aramwit P, Kwon GS. Nanotechnology in drug delivery. New York: Springer New York; 2009.

    Book  Google Scholar 

  56. Torchilin VP, de Villiers MM, Aramwit P, Kwon GS. Nanotechnology for intracellular delivery and targeting. Nanotechnology in drug delivery. Springer New York: New York; 2009.

    Google Scholar 

  57. Rukkumani R, Jatinder V, Yakhmi. Chapter 8: Nanotechnological approaches toward cancer chemotherapy. In: Ficai A, Grumezescu AM, editors. Micro and nano technologies, nanostructures for cancer therapy. Elsevier; 2017. p. 211–40.

    Google Scholar 

  58. Beloqui A, Coco R, Memvanga PB, Ucakar B, des Rieux A, Préat V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int J Pharm. 2014;473(1–2):203–12. https://doi.org/10.1016/j.ijpharm.2014.07.009. (a)

    Article  CAS  PubMed  Google Scholar 

  59. Beloqui A, Solinís MÁ, des Rieux A, Préat V, Rodríguez-Gascón A. Dextran–protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs. Int J Pharm. 2014;468(1–2):105–11. https://doi.org/10.1016/j.ijpharm.2014.04.027. (b)

    Article  CAS  PubMed  Google Scholar 

  60. Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12(1):143–61. https://doi.org/10.1016/j.nano.2015.09.004.

    Article  CAS  PubMed  Google Scholar 

  61. Duan C, Gao J, Zhang D, Jia L, Liu Y, Zheng D, Liu G, Tian X, Wang F, Zhang Q. Galactose-decorated pH-responsive nanogels for hepatoma-targeted delivery of oridonin. Biomacromolecules. 2011;12(12):4335–43. https://doi.org/10.1021/bm201270m.

    Article  CAS  PubMed  Google Scholar 

  62. Jin C, Bai L, Wu H, Song W, Guo G, Dou K. Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm Res. 2009;26(7):1776–84. https://doi.org/10.1007/s11095-009-9889-z.

    Article  CAS  PubMed  Google Scholar 

  63. Schleich N, Po S, Jacobs D, Ucakar B, Gallez B, Danhier F, Préat V. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release. 2014;194:82–91. https://doi.org/10.1016/j.jconrel.2014.07.059.

    Article  CAS  PubMed  Google Scholar 

  64. Gao Y, Xie J, Chen H, Gu S, Zhao R, Shao J, Jia L. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol Adv. 2014;32:761–77. https://doi.org/10.1016/j.biotechadv.2013.10.013.

    Article  CAS  PubMed  Google Scholar 

  65. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63:131–5. https://doi.org/10.1016/j.addr.2010.03.011.

    Article  CAS  PubMed  Google Scholar 

  66. Gadekar V, Borade Y, Kannaujia S, Rajpoot K, Anup N, Tambe V, Kalia K, Tekade RK. Nanomedicines accessible in the market for clinical interventions. J Control Release. 2021;330:372–97. https://doi.org/10.1016/j.jconrel.2020.12.034.

    Article  CAS  PubMed  Google Scholar 

  67. Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release. 2020;318:256–63. https://doi.org/10.1016/j.jconrel.2019.12.023.

    Article  CAS  PubMed  Google Scholar 

  68. Webster DM, Sundaram P, Byrne ME. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm. 2013;84:1–20. https://doi.org/10.1016/j.ejpb.2012.12.009.

    Article  CAS  PubMed  Google Scholar 

  69. Chen Z. Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med. 2010;16:594–602. https://doi.org/10.1016/j.molmed.2010.08.001.

    Article  CAS  PubMed  Google Scholar 

  70. Salehi B, Calina D, Docea AO, Koirala N, Aryal S, Lombardo D, Pasqua L, Taheri Y, Castillo CMS, Martorell M, Martins N, Iriti M, Suleria HAR, Sharifi-Rad J. Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases. J Clin Med. 2020;9(2):430. https://doi.org/10.3390/jcm9020430.

    Article  CAS  PubMed Central  Google Scholar 

  71. Caddeo C, Manconi M, Fadda AM, Lai F, Lampis S, Diez-Sales O, Sinico C. Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self- assembly and stability evaluation. Colloids Surf B: Biointerfaces. 2013;111:327–32. https://doi.org/10.1016/j.colsurfb.2013.06.016.

    Article  CAS  PubMed  Google Scholar 

  72. Kumar A, Ahuja A, Ali J, Baboota S. Curcumin-loaded lipid nanocarrier for improving bioavailability, stability and cytotoxicity against malignant glioma cells. Drug Deliv. 2016;23(1):214–29. https://doi.org/10.3109/10717544.2014.909906.

    Article  CAS  PubMed  Google Scholar 

  73. Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol. 2020;20:321–34. https://doi.org/10.1038/s41577-019-0269-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin H-S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.

    Article  CAS  Google Scholar 

  75. Makarov VG, Makarova MN, Trofimets EI, Makarova MN, Katelnikova AE, Kryshen KL. Endotracheal administration to laboratory animals. Lab Anim Sci. 2020;2:76–81. https://doi.org/10.29296/2618723X-2020-02-09.

    Article  Google Scholar 

  76. Trineeva OV, Halahakoon AJ, Slivkin AI. Cell carriers as systems of delivery of antitumor drugs. Drug Dev Reg. 2019;8(1):43–57. https://doi.org/10.33380/2305-2066-2019-8-1-43-57.

    Article  CAS  Google Scholar 

  77. Tolcher AW, Berlin JD, Cosaert J, Kauh J, Chan E, Piha-Paul SA, Amaya A, Tang S, Driscoll K, Kimbung R, Kambhampati SR, Gueorguieva I, Hong DS. A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2017;79(4):673–80. https://doi.org/10.1007/s00280-017-3245-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shimizu T, Seto T, Hirai F, Takenoyama M, Nosaki K, Tsurutani J, Kaneda H, Iwasa T, Kawakami H, Noguchi K, Shimamoto T, Nakagawa K. Phase 1 study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in Japanese patients with advanced solid tumors. Investig New Drugs. 2016;34(3):347–54. https://doi.org/10.1007/s10637-016-0347-6.

    Article  CAS  Google Scholar 

  79. Terheyden P, Becker JC. New developments in the biology and the treatment of metastatic Merkel cell carcinoma. Curr Opin Oncol. 2017;29:221–6. https://doi.org/10.1097/CCO.0000000000000363.

    Article  CAS  PubMed  Google Scholar 

  80. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60. https://doi.org/10.1038/nrd1632.

    Article  CAS  PubMed  Google Scholar 

  81. Camacho KM, Menegatti S, Mitragotri S. Low-molecular-weight polymer–drug conjugates for synergistic anticancer activity of camptothecin and doxorubicin combinations. Nanomedicine. 2016;11(9):1139–51. https://doi.org/10.2217/nnm.16.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. He R, Yin C. Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta Biomater. 2017:355–6. https://doi.org/10.1016/j.actbio.2017.02.012.

  83. Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res. 2002;8(4):1172–81.

    CAS  PubMed  Google Scholar 

  84. Yang T, Choi MK, Cui FD, Lee SJ, Chung SJ, Shim CK, Kim DD. Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharm Res. 2007;24(12):2402–11. https://doi.org/10.1007/s11095-007-9425-y.

    Article  CAS  PubMed  Google Scholar 

  85. Onishi H, Suyama K, Yamasaki A, Oyama Y, Fujimura A, Kawamoto M, Imaizumi A. CD24 modulates chemosensitivity of MCF-7 breast cancer cells. Anticancer Res. 2017;37(2):561–5. https://doi.org/10.21873/anticanres.11349.

    Article  CAS  PubMed  Google Scholar 

  86. Weissferdt A, Fujimoto J, Kalhor N, Rodriguez J, Bassett R, Wistuba II, Moran C. Expression of PD-1 and PD-L1 in thymic epithelial neoplasms. Mod Pathol. 2017;30:826–33. https://doi.org/10.1038/modpathol.2017.6.

    Article  CAS  PubMed  Google Scholar 

  87. Gardeck AM, Sheehan J, Low WC. Immune and viral therapies for malignant primary brain tumors. Expert Opin Biol Ther. 2017;17(4):457–74. https://doi.org/10.1080/14712598.2017.1296132.

    Article  CAS  PubMed  Google Scholar 

  88. Foreman PM, Friedman GK, Cassady KA, Markert JM. Oncolytic virotherapy for the treatment of malignant glioma. Neurotherapeutics. 2017;14(2):333–44. https://doi.org/10.1007/s13311-017-0516-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126:187–204. https://doi.org/10.1016/j.jconrel.2007.12.017.

    Article  CAS  PubMed  Google Scholar 

  90. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15. https://doi.org/10.1021/mp800051m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Riggio C, Pagni E, Raffa V, Cuschieri A. Nano-oncology: clinical application for cancer therapy and future perspectives. J Nanomater. 2011;2011:1–10. https://doi.org/10.1155/2011/164506.

    Article  Google Scholar 

  92. Sarfraz M, et al. Development of dual drug loaded nanosized liposomal formulation by a reengineered ethanolic injection method and its pre- clinical pharmacokinetic studies. Pharmaceutics. 2018;10:1–22. https://doi.org/10.3390/pharmaceutics10030151.

    Article  CAS  Google Scholar 

  93. Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D. Nanoscale drug delivery systems and the blood–brain barrier. Int J Nanomedicine. 2014;9:795–811. https://doi.org/10.2147/IJN.S52236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sedighi M, Sieber S, Rahimi F, Shahbazi MA, Rezayan AH, Huwyler J, Witzigmann D. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv Transl Res. 2019;9(1):404–13. https://doi.org/10.1007/s13346-018-0587-4.

    Article  CAS  PubMed  Google Scholar 

  95. Yang W, Liang H, Ma S, Wang D, Huang J. Gold nanoparticle based photothermal therapy: development and application for effective cancer treatment. Sustain Mater Technol. 2019;22:e00109. https://doi.org/10.3389/fchem.2019.00167.

    Article  CAS  Google Scholar 

  96. Wang J, Potocny AM, Rosenthal J, Day ES. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega. 2020;5:926–40. https://doi.org/10.1021/acsomega.9b04150.

    Article  CAS  PubMed  Google Scholar 

  97. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle- based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–87. https://doi.org/10.1007/s11095-016-1958-5.

    Article  CAS  PubMed  Google Scholar 

  98. Huang KW, Hsu FF, Qiu JT, Chern GJ, Lee YA, Chang CC, Huang YT, Sung YC, Chiang CC, Huang RL, Lin CC, Dinh TK, Huang HC, Shih YC, Alson D, Lin CY, Lin YC, Chang PC, Lin SY, Chen Y. Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Sci Adv. 2020;6(3):eaax5032. https://doi.org/10.1126/sciadv.aax5032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu C, Nam J, Hong H, Xu Y, Moon JJ. Positron emission tomography - guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano. 2019;13:12148–61. https://doi.org/10.1021/acsnano.9b06691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Arias LS, Pessan JP, Vieira APM, Lima TMT, Delbem ACB, Monteiro DR. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel). 2018;7(2):46. https://doi.org/10.3390/antibiotics7020046.

    Article  CAS  Google Scholar 

  101. Morrison PW, Connon CJ, Khutoryanskiy VV. Cyclodextrin-mediated enhancement of riboflavin solubility and corneal permeability. Mol Pharm. 2013;10(2):756–62. https://doi.org/10.1021/mp3005963.

    Article  CAS  PubMed  Google Scholar 

  102. Wimmer T. Cyclodextrins. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH; 2012.

    Google Scholar 

  103. Oconnor MS, Clemens D, Anderson A, Dinh D, Sadrerafi K. Cyclodextrin dimers: a pharmaceutical engineering approach to the therapeutic extraction of toxic oxysterols. Atherosclerosis. 2021;331:e130–1. https://doi.org/10.1016/j.atherosclerosis.2021.06.390.

    Article  Google Scholar 

  104. Valcourt DM, Dang MN, Scully MA, Day ES. Nanoparticle-mediated co-delivery of Notch-1antibodies and ABT-737 as a potent treatment strategy for triple-negative breast cancer. ACS Nano. 2020;14:3378–88. https://doi.org/10.1021/acsnano.9b09263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zimmer S, Grebe A, Bakke SS, Latz E. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med. 2016;8:333ra50. https://doi.org/10.1126/scitranslmed.aad6100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mahjoubin-Tehran M, Kovanen PT, Xu S, Jamialahmadi T, Sahebkar A. Cyclodextrins: potential therapeutics against atherosclerosis. Pharm Ther. 2020:107620. https://doi.org/10.1016/j.pharmthera.2020.107620.

  107. Gaspar J, Mathieu J, Alvarez P. 2-Hydroxypropyl-beta-cyclodextrin (HPβCD) reduces age-related lipofuscin accumulation through a cholesterol-associated pathway. Sci Rep. 2017;7(1):2197. https://doi.org/10.1038/s41598-017-02387-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24. https://doi.org/10.1038/s41573-020-0090-8.

    Article  CAS  PubMed  Google Scholar 

  109. Yadav HKS, Almokdad AA, Shaluf SIM, Debe MS. Chapter 17: Polymer-based nanomaterials for drug-delivery carriers. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Nanocarriers for drug delivery. Elsevier; 2019.

    Google Scholar 

  110. Fluksman A, Ofra B. A robust method for critical micelle concentration determination using coumarin-6 as a fluorescent probe. Anal Methods. 2019;11:3810–8. https://doi.org/10.1039/C9AY00577C.

    Article  CAS  Google Scholar 

  111. Hussein YHA, Youssry M. Polymeric micelles of biodegradable diblock copolymers: enhanced encapsulation of hydrophobic drugs. Materials (Basel). 2018;11(5):688. https://doi.org/10.3390/ma11050688.

    Article  CAS  Google Scholar 

  112. Atanase LI, Riess G. Self-assembly of block and graft copolymers in organic solvents: an overview of recent advances. Polymers. 2018;10:62. https://doi.org/10.3390/polym10010062.

    Article  CAS  PubMed Central  Google Scholar 

  113. Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010.

    Article  CAS  PubMed  Google Scholar 

  114. Photos PJ, Bacakova L, Discher B, Bates FS, Discher DE. Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release. 2003;90:323–34. https://doi.org/10.1016/s0168-3659(03)00201-3.

    Article  CAS  PubMed  Google Scholar 

  115. Osborne DW, Ward AJ, O'Neill KJ. Microemulsions as topical drug delivery vehicles: in-vitro transdermal studies of a model hydrophilic drug. J Pharm Pharmacol. 1991;43(6):450–4.

    CAS  PubMed  Google Scholar 

  116. Nath N, Hyun J, Ma H, Chilkoti A. Surface engineering strategies for control of protein and cell interactions. Surf Sci. 2004;4570:98–110. https://doi.org/10.1016/j.susc.2004.06.182.

    Article  CAS  Google Scholar 

  117. Wang S, Lu L, Gruetzmacher JA, Currier BL, Yaszemski MJ. Synthesis and characterizations of biodegradable and crosslink able poly(ε-caprolactone fumarate), poly(ethylene glycol fumarate), and their amphiphilic copolymer. Biomaterials. 2006;27:832–41. https://doi.org/10.1016/j.biomaterials.2005.07.013.

    Article  CAS  PubMed  Google Scholar 

  118. Kim J-Y, Shim S-B, Shim J-K. Comparison of amphiphilic polyurethane nanoparticles to nonionic surfactants for flushing phenanthrene from soil. J Hazard Mater. 2004;116:205–12. https://doi.org/10.1016/j.jhazmat.2004.08.031.

    Article  CAS  PubMed  Google Scholar 

  119. Bader H, Ringsdorf H, Schmidt B. Water soluble polymers in medicine. Angew Macromol Chem. 1984;123:457–85. https://doi.org/10.1002/apmc.1984.051230121.

    Article  Google Scholar 

  120. Simon JA. Estradiol in micellar nanoparticles: the efficacy and safety of a novel transdermal drug-delivery technology in the management of moderate to severe vasomotor symptoms. Menopause. 2006;13:222–31. https://doi.org/10.1097/01.gme.0000174096.56652.4f.

    Article  PubMed  Google Scholar 

  121. Lee AL, Wang Y, Pervaiz S, Fan W, Yang YY. Synergistic anticancer effects achieved by co-delivery of TRAIL and paclitaxel using cationic polymeric micelles. Macromol Biosci. 2011;11:296–307. https://doi.org/10.1002/mabi.201000332.

    Article  CAS  PubMed  Google Scholar 

  122. Scott-Moncrieff JC, Shao Z, Mitra AK. Enhancement of intestinal insulin absorption by bile salt-fatty acid mixed micelles in dogs. J Pharm Sci. 1994;83:1465–9. https://doi.org/10.1002/jps.2600831020.

    Article  CAS  PubMed  Google Scholar 

  123. Wang B, Ma R, Liu G, Li Y, Liu X, An Y, Shi L. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir. 2009;25:12522–8.

    Article  CAS  Google Scholar 

  124. Staroverov SA, Pristensky DV, Yermilov DN, Gabalov KP, Zhemerichkin DA, Sidorkin VA, Shcherbakov AA, Shchyogolev SY, Dykman LA. The effectivity analysis of accumulation of liposomal, micellar, and water-soluble forms of diminazene in cells and in organs. Drug Deliv. 2006;13:351–5. https://doi.org/10.1080/10717540500459084.

    Article  CAS  PubMed  Google Scholar 

  125. Staroverov SA, Sidorkin VA, Fomin AS, Shchyogolev SY, Dykman LA. Biodynamic parameters of micellar diminazene in sheep erythrocytes and blood plasma. J Vet Sci. 2011;12:303–7. https://doi.org/10.4142/jvs.2011.12.4.303.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Vail DM, Von Euler H, Rusk AW, Barber L, Clifford C, Elmslie R, Fulton L, Hirschberger J, Klein M, London C, et al. A randomized trial investigating the efficacy and safety of water soluble micellar paclitaxel (Paccal Vet) for treatment of nonresectable grade 2 or 3 mast cell tumors in dogs. J Vet Intern Med. 2012;26:598–607. https://doi.org/10.1111/j.1939-1676.2012.00897.x.

    Article  CAS  PubMed  Google Scholar 

  127. Rey AI, Segura J, Arandilla E, López-Bote CJ. Short- and long-term effect of oral administration of micellized natural vitamin E (D-α-tocopherol) on oxidative status in race horses under intense training. J Anim Sci. 2013;91:1277–84. https://doi.org/10.2527/jas.2012-5125.

    Article  CAS  PubMed  Google Scholar 

  128. Rey A, Amazan D, Cordero G, Olivares A, López-Bote CJ. Lower oral doses of micellized α-tocopherol compared to α-tocopheryl acetate in feed modify fatty acid profiles and improve oxidative status in pigs. Int J Vitam Nutr Res. 2014;84:229–43. https://doi.org/10.1024/0300-9831/a000209.

    Article  CAS  PubMed  Google Scholar 

  129. Francis MF, Cristea M, Winnik FM. Exploiting the vitamin B12 pathway to enhance oral drug delivery via polymeric micelles. Biomacromolecules. 2005;6:2462–7. https://doi.org/10.1021/bm0503165.

    Article  CAS  PubMed  Google Scholar 

  130. Al-Qushawi A, Rassouli A, Atyabi F, Peighambari SM, Esfandyari-Manesh M, Shams GR, Yazdani A. Preparation and characterization of three tilmicosin-loaded lipid nanoparticles: physicochemical properties and in-vitro antibacterial activities. Iran J Pharm Res. 2016;15:663–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Troncarelli MZ, Brandão HM, Gern JC, Guimarães AS, Langoni H. Nanotechnology and antimicrobials in veterinary medicine. Badajoz: Formatex; 2013.

    Google Scholar 

  132. Thipparaboina R, Chavan RB, Kumar D, Modugula S, Shastri NR. Micellar carriers for the delivery of multiple therapeutic agents. Colloids Surf B Biointerfaces. 2015;135:291–308. https://doi.org/10.1016/j.colsurfb.2015.07.046.

    Article  CAS  PubMed  Google Scholar 

  133. Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res. 2018;9(1):2–8. https://doi.org/10.4103/japtr.JAPTR_314_17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shaw DJ. Introduction to colloid and surface chemistry. Elsevier; 2013.

    Google Scholar 

  135. Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine. 2010;5:485–505. https://doi.org/10.2217/nnm.10.10.

    Article  CAS  PubMed  Google Scholar 

  136. Imran M, Shah MR, Shafiullah. Chapter 10: Amphiphilic block copolymers–based micelles for drug delivery. In: Grumezescu AM, editor. Design and development of new nanocarriers. William Andrew Publishing; 2018. p. 365–400.

    Chapter  Google Scholar 

  137. Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014;4:17028–38. https://doi.org/10.1039/C3RA47370H.

    Article  CAS  Google Scholar 

  138. Shi Y, Lammers T, Storm G, Hennink WE. Physico-chemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery. Macromol Biosci. 2017;17:1600160. https://doi.org/10.1002/mabi.201600160.

    Article  CAS  Google Scholar 

  139. Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7:53–65. https://doi.org/10.1016/j.nantod.2012.01.002.

    Article  CAS  Google Scholar 

  140. Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(d,l-lactide)-block–poly(ethylene oxide) micelles. J Control Release. 2004;94:323–35. https://doi.org/10.1016/j.jconrel.2003.10.012.

    Article  CAS  PubMed  Google Scholar 

  141. Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11:4985–98. https://doi.org/10.1007/s12274-018-2152-3.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zeng L, Gao J, Liu Y, Gao J, Yao L, Yang X, Liu X, He B, Hu L, Shi J, Song M, Qu G, Jiang G. Role of protein corona in the biological effect of nanomaterials: investigating methods. TrAC Trends Anal Chem. 2019;118:303–14. https://doi.org/10.1016/j.trac.2019.05.039.

    Article  CAS  Google Scholar 

  143. Zhu Y, Meng T, Tan Y, Yang X, Liu Y, Liu X, Yu F, Wen L, Dai S, Yuan H, Hu F. Negative surface shielded polymeric micelles with colloidal stability for intracellular endosomal/lysosomal escape. Mol Pharm. 2018;15:5374–86. https://doi.org/10.1021/acs.molpharmaceut.8b00842.

    Article  CAS  PubMed  Google Scholar 

  144. Pepić I, Lovrić J, Filipović-Grčić J. How do polymeric micelles cross epithelial barriers? Eur J Pharm Sci. 2013;50:42–55. https://doi.org/10.1016/j.ejps.2013.04.012.

    Article  CAS  PubMed  Google Scholar 

  145. Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, Nicoli S. Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv. 2019;16:397–413. https://doi.org/10.1080/17425247.2019.1597848.

    Article  CAS  PubMed  Google Scholar 

  146. Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, Agarwal RG, Lam KS. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32:3435–46. https://doi.org/10.1016/j.biomaterials.2011.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Logie J, Owen SC, McLaughlin CK, Shoichet MS. PEG-graft density controls polymeric nanoparticle micelle stability. Chem Mater. 2014;26:2847–55. https://doi.org/10.1021/cm500448x.

    Article  CAS  Google Scholar 

  148. Shiraishi K, Sanada Y, Mochizuki S, Kawano K, Maitani Y, Sakurai K, Yokoyama M. Determination of polymeric micelles’ structural characteristics, and effect of the characteristics on pharmacokinetic behaviours. J Control Release. 2015;203:77–84. https://doi.org/10.1016/j.jconrel.2015.02.017.

    Article  CAS  PubMed  Google Scholar 

  149. Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine. 2018;13:2921–42. https://doi.org/10.2147/IJN.S158696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Moffitt M, Khougaz K, Eisenberg A. Micellization of ionic block copolymers. Acc Chem Res. 1996;29:95–102. https://doi.org/10.1021/ar940080+.

    Article  CAS  Google Scholar 

  151. Zhang L, Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym Adv Technol. 1998;9:677–99.

    Article  CAS  Google Scholar 

  152. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109(1–3):169–88. https://doi.org/10.1016/j.jconrel.2005.09.034.

    Article  CAS  PubMed  Google Scholar 

  153. Görner T, Gref R, Michenot D, Sommer F, Tran MN, Dellacherie E. Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. J Control Release. 1999;57:259–68. https://doi.org/10.1016/s0168-3659(98)00121-7.

    Article  PubMed  Google Scholar 

  154. Lee H, Zeng F, Dunne M, Allen C. Methoxy poly(ethylene glycol)-block-poly(δ-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules. 2005;6:3119–28. https://doi.org/10.1021/bm050451h.

    Article  CAS  PubMed  Google Scholar 

  155. Soo PL, Lovric J, Davidson P, Maysinger D, Eisenberg A. Polycaprolactone-block-poly(ethylene oxide) micelles: A nanodelivery system for 17β-estradiol. Mol Pharm. 2005;2:519–27. https://doi.org/10.1021/mp050049h.

    Article  CAS  Google Scholar 

  156. Jeong Y-I, Cheon J-B, Kim S-H, Nah J-W, Lee Y-M, Sung Y-K, Akaike T, Cho C-S. Clonazepam release from core-shell type nanoparticles in vitro. J Control Release. 1998;51:169–78. https://doi.org/10.1016/s0168-3659(97)00163-6.

    Article  CAS  PubMed  Google Scholar 

  157. Jeong Y-I, Nah J-W, Lee H-C, Kim S-H, Cho C-S. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Int J Pharm. 1999;188:49–58. https://doi.org/10.1016/s0378-5173(99)00202-1.

    Article  CAS  PubMed  Google Scholar 

  158. Huh KM, Lee SC, Cho YW, Lee J, Jeong JH, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101:59–68. https://doi.org/10.1016/j.jconrel.2004.07.003.

    Article  CAS  PubMed  Google Scholar 

  159. Huh KM, Min HS, Lee SC, Lee HJ, Kim S, Park K. A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel. J Control Release. 2008;126:122–9. https://doi.org/10.1016/j.jconrel.2007.11.008.

    Article  CAS  PubMed  Google Scholar 

  160. Allen C, Eisenberg A, Mrsic J, Maysinger D. PCL-b-PEO micelles as a delivery vehicle for FK506: assessment of a functional recovery of crushed peripheral nerve. Drug Deliv. 2000;7:139–45. https://doi.org/10.1080/10717540050120179.

    Article  CAS  PubMed  Google Scholar 

  161. De Jaeghere F, Allémann E, Leroux JC, Stevels W, Feijen J, Doelker E, Gurny R. Formulation and lyoprotection of poly(lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharm Res. 1999;16(6):859–66. https://doi.org/10.1023/a:1018826103261.

    Article  PubMed  Google Scholar 

  162. Gorshkova MY, Stotskaya LL. Micelle-like macromolecular systems for controlled release of daunomycin. Polym Adv Technol. 1998;9:362–7. https://doi.org/10.1002/(SICI)1099-1581(199806)9:6<362::AID-PAT793>3.0.CO;2-I.

    Article  CAS  Google Scholar 

  163. Gref R, Minamitake Y, Peracchia M, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263:1600–3. https://doi.org/10.1126/science.8128245.

    Article  CAS  PubMed  Google Scholar 

  164. Soo PL, Luo L, Maysinger D, Eisenberg A. Incorporation and release of hydrophobic probes in biocompatible polycaprolactone-block-poly(ethylene oxide) micelles: implications for drug delivery. Langmuir. 2002;18:9996–10004. https://doi.org/10.1021/la026339b.

    Article  CAS  Google Scholar 

  165. La SB, Okano T, Kataoka K. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)–poly(β-benzyl L-aspartate) block copolymer micelles. J Pharm Sci. 1996;85:85–90. https://doi.org/10.1021/js950204r.

    Article  CAS  PubMed  Google Scholar 

  166. Satoh T, Higuchi Y, Kawakami S, Hashida M, Kagechika H, Shudo K, Yokoyama M. Encapsulation of the synthetic retinoids Am80 and LE540 into polymeric micelles and the retinoids’ release control. J Control Release. 2009;136:187–95. https://doi.org/10.1016/j.jconrel.2009.02.024.

    Article  CAS  PubMed  Google Scholar 

  167. Shuai X, Merdan T, Schaper AK, Xi F, Kissel T. Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem. 2004;15(3):441–8. https://doi.org/10.1021/bc034113u.

    Article  CAS  PubMed  Google Scholar 

  168. Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol. 2012;258(2):151–65. https://doi.org/10.1016/j.taap.2011.11.010.

    Article  CAS  PubMed  Google Scholar 

  169. Patel P, Shah J. Safety and toxicological considerations of nanomedicines: the future directions. Curr Clin Pharmacol. 2017;12(2):73–82. https://doi.org/10.2174/1574884712666170509161252.

    Article  CAS  PubMed  Google Scholar 

  170. Hock SC, Ying YM, Wah CL. A review of the current scientific and regulatory status of nanomedicines and the challenges ahead. PDA J Pharm Sci Technol. 2011;65(2):177–95.

    CAS  PubMed  Google Scholar 

  171. Siegrist S, Cörek E, Detampel P, Sandström J, Wick P, Huwyler J. Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology. 2019;13(1):73–99. https://doi.org/10.1080/17435390.2018.1505000.

    Article  CAS  PubMed  Google Scholar 

  172. Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966;50(4):219–44.

    CAS  PubMed  Google Scholar 

  173. Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 2017;248:96–116. https://doi.org/10.1016/j.jconrel.2017.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci Technol Adv Mater. 2019;20(1):324–36. https://doi.org/10.1080/14686996.2019.1590126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lekshmi UM, Reddy PN. Preliminary toxicological report of metformin hydrochloride loaded polymeric nanoparticles. Toxicol Int. 2012;19(3):267–72. https://doi.org/10.4103/0971-6580.103667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Talkar S, Dhoble S, Majumdar A, Patravale V. Transmucosal nanoparticles: toxicological overview. Adv Exp Med Biol. 2018;1048:37–57. https://doi.org/10.1007/978-3-319-72041-8_3.

    Article  CAS  PubMed  Google Scholar 

  177. Đorđević S, Gonzalez MM, Conejos-Sánchez I, Carreira B, Pozzi S, Acúrcio RC, Satchi-Fainaro R, Florindo HF, Vicent MJ. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res. 2022;12(3):500–25. https://doi.org/10.1007/s13346-021-01024-2.

    Article  PubMed  Google Scholar 

  178. Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv. 2010;7(2):145–58. https://doi.org/10.1517/17425240903436479.

    Article  CAS  PubMed  Google Scholar 

  179. Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst. 2003;20(5):357–403. https://doi.org/10.1615/critrevtherdrugcarriersyst.v20.i5.20.

    Article  CAS  PubMed  Google Scholar 

  180. Kumar R, Kulkarni A, Nagesha DK, Sridhar S. In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics. 2012;2(7):714–22. https://doi.org/10.7150/thno.3927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Matsumura Y. Polymeric micellar delivery systems in oncology. Jpn J Clin Oncol. 2008;38(12):793–802. https://doi.org/10.1093/jjco/hyn116.

    Article  PubMed  Google Scholar 

  182. Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12(36):4669–84. https://doi.org/10.2174/138161206779026245.

    Article  CAS  PubMed  Google Scholar 

  183. Soo PL, Eisenberg A. Preparation of block copolymer vesicles in solution. J Polym Sci B. 2004;42:923–38.

    Article  CAS  Google Scholar 

  184. Lecommandoux S, Sandre O, Chécot F, Rodriguez-Hernandez J, Perzynski R. Magnetic nanocomposite, micelles and vesicles. Adv Mater. 2005;17:712–9. https://doi.org/10.1002/adma.200400599.

    Article  CAS  Google Scholar 

  185. Zhu Y, Yang B, Chen S, Du J. Polymer vesicles: mechanism, preparation, application, and responsive behavior. Prog Polym Sci. 2017;64:1–22. https://doi.org/10.1016/j.progpolymsci.2015.05.001.

    Article  CAS  Google Scholar 

  186. Cabral H, Miyata K, Osada K, Kataoka K. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118:6844–92. https://doi.org/10.1021/acs.chemrev.8b00199.

    Article  CAS  PubMed  Google Scholar 

  187. Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, Paz-Ares L, Cho DC, Infante JR, Alsina M, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients. Cancer Discov. 2013;3:406–17. https://doi.org/10.1158/2159-8290.CD-12-0429.

    Article  CAS  PubMed  Google Scholar 

  188. Shen Y, Zhang J, Hao W, Wang T, Liu J, Xie Y, Xu S, Liu H. Copolymer micelles function as pH-responsive nanocarriers to enhance the cytotoxicity of a HER2 aptamer in HER2-positive breast cancer cells. Int J Nanomedicine. 2018;2018(13):537–53. https://doi.org/10.2147/IJN.S149942.

    Article  Google Scholar 

  189. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24:1029–46. https://doi.org/10.1007/s11095-006-9223-y.

    Article  CAS  PubMed  Google Scholar 

  190. Castillo PM, Jimenez-Ruiz A, Carnerero JM, Prado-Gotor R. Exploring factors for the design of nanoparticles as drug delivery vectors. ChemPhysChem. 2018;19:2810–28. https://doi.org/10.1002/cphc.201800388.

    Article  CAS  PubMed  Google Scholar 

  191. Xu P, Van Kirk EA, Li S, Murdoch WJ, Ren J, Hussain MD, Radosza M, Shen Y. Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy. Colloids Surf B Biointerfaces. 2006;48:50–7. https://doi.org/10.1016/j.colsurfb.2006.01.004.

    Article  CAS  PubMed  Google Scholar 

  192. Ren J, Fang Z, Yao L, Dahmani FZ, Yin L, Zhou J, Yao J. A micelle–like structure of poloxamer–methotrexate conjugates as nanocarrier for methotrexate delivery. Int J Pharm. 2015;487:177–86. https://doi.org/10.1016/j.ijpharm.2015.04.014.

    Article  CAS  PubMed  Google Scholar 

  193. Li X, Yang Z, Yang K, Zhou Y, Chen X, Zhang Y, Wang F, Liu Y, Ren L. Self-assembled polymeric micellar nanoparticles as nanocarriers for poorly soluble anticancer drug ethaselen. Nanoscale Res Lett. 2009;4:1502–15. https://doi.org/10.1007/s11671-009-9427-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bhadra D, Bhadra S, Jain S, Jain NK. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm. 2003;257:111–24. https://doi.org/10.1016/s0378-5173(03)00132-7.

    Article  CAS  PubMed  Google Scholar 

  195. Cesur H, Rubinstein I, Pai A, Onyuksel H. Self-associated indisulam in phospholipid-based nanomicelles: a potential nanomedicine for cancer. Nanomedicine. 2009;5:178–83. https://doi.org/10.1016/j.nano.2008.09.001.

    Article  CAS  PubMed  Google Scholar 

  196. Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, Li Y. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano. 2013;7:5858–69. https://doi.org/10.1021/nn4010796.

    Article  CAS  PubMed  Google Scholar 

  197. Tagami T, Ozeki T. Recent trends in clinical trials related to carrier-based drugs. J Pharm Sci. 2017;106:2219–26. https://doi.org/10.1016/j.xphs.2017.02.026.

    Article  CAS  PubMed  Google Scholar 

  198. Bu HZ, Gukasyan HJ, Goulet L, Lou XJ, Xiang C, Koudriakova T. Ocular disposition, pharmacokinetics, efficacy, and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab. 2007;8:91–107. https://doi.org/10.2174/138920007779815977.

    Article  CAS  PubMed  Google Scholar 

  199. Norouzi P, Amini M, Dinarvand R, Arefian E, Seyedjafari E, Atyabi F. Co-delivery of gemcitabine prodrug along with anti NF-κB siRNA by tri-layer micelles can increase cytotoxicity, uptake and accumulation of the system in the cancers. Mater Sci Eng C. 2020;116:111161. https://doi.org/10.1016/j.msec.2020.111161.

    Article  CAS  Google Scholar 

  200. Chopra P, Hao J, Li SK. Sustained release micellar carrier systems for iontophoretic transport of dexamethasone across human sclera. J Control Release. 2012;160:96–104. https://doi.org/10.1016/j.jconrel.2012.01.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ren S, Chen D, Jiang M. Noncovalently connected micelles based on a β-cyclodextrin containing polymer and adamantane end-capped poly(ε-caprolactone) via host–guest interactions. J Polym Sci A. 2009;47:4267–78. https://doi.org/10.1002/pola.23479.

    Article  CAS  Google Scholar 

  202. Liu LH, Venkatraman SS, Yang YY, Guo K, Lu J, He BP, Moochhala S, Kan LJ. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier. Biopolymers. 2008;90:617–23. https://doi.org/10.1002/bip.20998.

    Article  CAS  PubMed  Google Scholar 

  203. Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014;9:4357–73. https://doi.org/10.2147/IJN.S46900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pristensky DV, Staroverov SA, Ermilov DN, Shchyogolev SY, Dykman LA. Analysis of effectiveness of intracellular penetration of ivermectin immobilized onto corpuscular carriers. Biochem Moscow Suppl Ser B. 2007;1:249–53.

    Article  Google Scholar 

  205. Sawant RR, Torchilin VP. Multifunctionality of lipid-core micelles for drug delivery and tumour targeting. Mol Membr Biol. 2010;27:232–46. https://doi.org/10.3109/09687688.2010.516276.

    Article  CAS  PubMed  Google Scholar 

  206. Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;15:862–71. https://doi.org/10.1208/s12249-014-0113-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yousefpour MM, Yari KA. Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemother Pharmacol. 2017;79(4):637–49. https://doi.org/10.1007/s00280-017-3273-1.

    Article  CAS  Google Scholar 

  208. Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech. 2014;15:1527–34. https://doi.org/10.1208/s12249-014-0177-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014. https://doi.org/10.1038/natrevmats.2016.14.

    Article  CAS  Google Scholar 

  210. van der Meel R, Lammers T, Hennink WE. Cancer nanomedicines: oversold or underappreciated? Expert Opin Drug Deliv. 2017;14(1):1–5. https://doi.org/10.1080/17425247.2017.1262346.

    Article  PubMed  Google Scholar 

  211. Wang J, Li S, Han Y, Guan J, Chung S, Wang C, Li D. Poly(ethylene glycol)–polylactide micelles for cancer therapy. Front Pharmacol. 2018;9:202. https://doi.org/10.3389/fphar.2018.00202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Rollerova E, Jurcovicova J, Mlynarcikova A, Sadlonova I, Bilanicova D, Wsolova L, et al. Delayed adverse effects of neonatal exposure to polymeric nanoparticle poly (ethylene glycol)-block-polylactide methyl ether on hypothalamic–pituitary–ovarian axis development and function in Wistar rats. Reprod Toxicol. 2015;57:165–75. https://doi.org/10.1016/j.reprotox.2015.07.072.

    Article  CAS  PubMed  Google Scholar 

  213. Scsukova S, Mlynarcikova A, Kiss A, Rollerova E. Effect of polymeric nanoparticle poly (ethylene glycol)-block-poly (lactic acid) (PEG-bPLA) on in vitro luteinizing hormone release from anterior pituitary cells of infantile and adult female rats. Neuro Endocrinol Lett. 2015;36:88–94.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation [Projects Nos. 22-24-00417 (O. I. Guliy), and 19-14-00077-II (S. A. Staroverov, A. S. Fomin, L. A. Dykman)].

Conflict of Interest

There are no conflicts of interests in this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guliy, O.I., Fomin, A.S., Zhnichkova, E.G., Kozlov, S.V., Staroverov, S.A., Dykman, L.A. (2022). Polymeric Micelles for Targeted Drug Delivery Systems. In: Barabadi, H., Mostafavi, E., Saravanan, M. (eds) Pharmaceutical Nanobiotechnology for Targeted Therapy. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-12658-1_18

Download citation

Publish with us

Policies and ethics