Skip to main content

Polymersomes for Targeted Drug and Gene Delivery Systems

  • Chapter
  • First Online:
Pharmaceutical Nanobiotechnology for Targeted Therapy

Abstract

Polymersomes or stimuli-sensitive polymeric vesicles are spherical vesicles, with shells formed by copolymers in amphiphilic blocks in a polymeric bilayer and hydrophilic core, capable of carrying polar substances, enabling the encapsulation of hydrophobic or hydrophilic molecules, as well as carrying by active or passive transports. These vesicles have high stability and controllable properties, because of their chemical structure of the chain, as well as the self-assembly process. They are responsive to external stimuli such as light, temperature, pH, redox potential, and magnetic effect; thus, their potential application in drug and gene delivery systems by targeting drugs and genes to specific action sites and/or through controlled release has been explored. The use of polymersomes optimizes gene therapy because it protects the DNA from enzymatic degradation and helps in the treatment of defective gene expression, being a great alternative to viral carriers that can result in unwanted effects such as high immunogenicity and mutagenicity. Therefore, polymersomes are presented as important objects of study in the field of nanobiotechnology and pharmaceutical modulation. In this context, this chapter will address the development, characterization, and application of polymersomes, aiming to obtain new drug and pharmaceutical delivery systems, with different therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed F, Photos PJ, Discher DE. Polymersomes as viral capsid mimics. Drug Dev Res. 2006;67(1):4–14.

    Article  CAS  Google Scholar 

  2. Bermudez H, Brannan AK, Hammer DA, Bates FS, Discher DE. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules. 2002;35(21):8203–8.

    Article  CAS  Google Scholar 

  3. Discher DE, Eisenberg A. Polymer vesicles. Science. 2002;297(5583):967–73.

    Article  CAS  PubMed  Google Scholar 

  4. Onaca O, Enea R, Hughes DW, Meier W. Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol Biosci. 2009;9(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  5. Kauscher U, Holme MN, Björnmalm M, Stevens MM. Physical stimuli-responsive vesicles in drug delivery: beyond liposomes and polymersomes. In: Advanced drug delivery reviews, Elsevier B.V; 2019;138: 259–75.

    Google Scholar 

  6. Messager L, Gaitzsch J, Chierico L, Battaglia G. Novel aspects of encapsulation and delivery using polymersomes. Curr Opin Pharmacol. 2014;18:104–11.

    Article  CAS  PubMed  Google Scholar 

  7. Discher DE, Ortiz V, Srinivas G, Klein ML, Kim Y, Christian D, et al. Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog Polym Sci. 2007;32(8–9):838–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. 84 Nat nanotech 2007 R Langer nanocarriers as an emerging platform for cancer therapy.pdf. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  9. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4(7):581–93.

    Article  CAS  PubMed  Google Scholar 

  10. Xu L, Anchordoquy TJ. Drug delivery trends in clinical trails and translational medicine: challenges and opportunities in the delivery of nucleic acid-based therapeutics. J Pharm Sci. 2011;100(1):38–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release. 2006;116(2 SPEC. ISS.):150–8.

    Google Scholar 

  12. Iqbal S, Blenner M, Alexander-Bryant A, Larsen J. Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: from design to therapeutic applications. Biomacromolecules. 2020;21(4):1327–50.

    Article  CAS  PubMed  Google Scholar 

  13. Che H, van Hest JCM. Stimuli-responsive polymersomes and nanoreactors. J Mater Chem B. 2016;4(27):4632–47.

    Article  CAS  PubMed  Google Scholar 

  14. Che H, van Hest JCM. Adaptive polymersome nanoreactors. ChemNanoMat. 2019;5(9):1092–109.

    Article  CAS  Google Scholar 

  15. Stimuli-responsive polymersomes for cancer therapy, In Woodhead Publishing Series in Biomaterials, Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Woodhead Publishing, 2019, Pages 413-438, ISBN 9780081019955, https://doi.org/10.1016/B978-0-08-101995-5.00016-7.

  16. Nayanathara U, Kermaniyan SS, Such GK. Multicompartment polymeric nanocarriers for biomedical applications. Macromol Rapid Commun. 2020;41(18):1–10.

    Article  Google Scholar 

  17. Blackman LD, Varlas S, Arno MC, Fayter A, Gibson MI, O’Reilly RK. Permeable protein-loaded polymersome cascade nanoreactors by polymerization-induced self-assembly. ACS Macro Lett. 2017;6(11):1263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Langowska K, Palivan CG, Meier W. Polymer nanoreactors shown to produce and release antibiotics locally. Chem Commun. 2013;49(2):128–30.

    Article  CAS  Google Scholar 

  19. Hu, Y., Qiu, L. (2019). Polymersomes: Preparation and Characterization. In: Weissig, V., Elbayoumi, T. (eds) Pharmaceutical Nanotechnology. Methods in Molecular Biology, vol 2000. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9516-5_17.

  20. Matoori S, Leroux JC. Twenty-five years of polymersomes: lost in translation? Mater Horiz. 2020;7(5):1297–309.

    Article  CAS  Google Scholar 

  21. Lee James CM, Bermudez H, Discher BM, Sheehan MA, Won YY, Bates FS, et al. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol Bioeng. 2001;73(2):135–45.

    Article  Google Scholar 

  22. Dionzou M, Morère A, Roux C, Lonetti B, Marty J-D, Mingotaud C, et al. Comparison of methods for the fabrication and the characterization of polymer self-assemblies: what are the important parameters? Soft Matter. 2016;12(7):2166–76.

    Article  CAS  PubMed  Google Scholar 

  23. Theogarajan L, Desai S, Baldo M, Scholz C. Versatile synthesis of self-assembling ABA triblock copolymers with polymethyloxazoline A-blocks and a polysiloxane B-block decorated with supramolecular receptors. Polym Int. 2008;57(4):660–7.

    Article  CAS  Google Scholar 

  24. Meerovich I, Dash AK. Polymersomes for drug delivery and other biomedical applications. In: Materials for biomedical engineering. Elsevier; 2019. p. 269–309.

    Chapter  Google Scholar 

  25. Hu X, Zhang Y, Xie Z, Jing X, Bellotti A, Gu Z. Stimuli-responsive polymersomes for biomedical applications. Biomacromolecules. 2017;18(3):649–73.

    Article  CAS  PubMed  Google Scholar 

  26. Pang Z, Gao H, Yu Y, Guo L, Chen J, Pan S, et al. Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug Chem. 2011;22(6):1171–80.

    Article  CAS  PubMed  Google Scholar 

  27. Gao H, Pang Z, Fan L, Hu K, Wu B, Jiang X. Effect of lactoferrin- and transferrin-conjugated polymersomes in brain targeting: in vitro and in vivo evaluations. Acta Pharmacol Sin. 2010;31(2):237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fenaroli F, Robertson JD, Scarpa E, Gouveia VM, di Guglielmo C, de Pace C, et al. Polymersomes eradicating intracellular bacteria. ACS Nano. 2020;14(7):8287–98.

    Article  CAS  PubMed  Google Scholar 

  29. Lomas H, Canton I, MacNeil S, Du J, Armes SP, Ryan AJ, et al. Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mater. 2007;19(23):4238–43.

    Article  CAS  Google Scholar 

  30. Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules. 2009;10(2):197–209.

    Article  CAS  PubMed  Google Scholar 

  31. Thambi T, Lee DS. Stimuli-responsive polymersomes for cancer therapy. In: Stimuli responsive polymeric nanocarriers for drug delivery applications: volume 2: advanced nanocarriers for therapeutics. Elsevier Ltd.; 2018. p. 413–38.

    Google Scholar 

  32. Xu H, Meng F, Zhong Z. Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release. J Mater Chem. 2009;19(24):4183–90.

    Article  CAS  Google Scholar 

  33. Wang L, Liu G, Wang X, Hu J, Zhang G, Liu S. Acid-disintegratable polymersomes of pH-responsive amphiphilic diblock copolymers for intracellular drug delivery. Macromolecules. 2015;48(19):7262–72.

    Article  CAS  Google Scholar 

  34. Felber AE, Dufresne M-H, Leroux J-C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev. 2012;64(11):979–92.

    Article  CAS  PubMed  Google Scholar 

  35. Du Y, Chen W, Zheng M, Meng F, Zhong Z. pH-sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials. 2012;33(29):7291–9.

    Article  CAS  PubMed  Google Scholar 

  36. Zhan F, Chen W, Wang Z, Lu W, Cheng R, Deng C, et al. Acid-activatable prodrug nanogels for efficient intracellular doxorubicin release. Biomacromolecules. 2011;12(10):3612–20.

    Article  CAS  PubMed  Google Scholar 

  37. Meng F, Hiemstra C, Engbers GHM, Feijen J. Biodegradable polymersomes. Macromolecules [Internet]. 2003;36(9):3004–6. Available from: https://doi.org/10.1021/ma034040+.

    Article  CAS  Google Scholar 

  38. Ghoroghchian PP, Li G, Levine DH, Davis KP, Bates FS, Hammer DA, et al. Bioresorbable vesicles formed through spontaneous self-assembly of amphiphilic poly(ethylene oxide)- block -polycaprolactone. Macromolecules. 2006;39(5):1673–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma AK, Prasher P, Aljabali AA, Mishra V, Gandhi H, Kumar S, et al. Emerging era of “somes”: polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy. Drug Deliv Transl Res. 2020;10(5):1171–90.

    Article  CAS  PubMed  Google Scholar 

  40. Chen W, Meng F, Cheng R, Zhong Z. pH-sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release. 2010;142(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  41. Li S, Meng F, Wang Z, Zhong Y, Zheng M, Liu H, et al. Biodegradable polymersomes with an ionizable membrane: facile preparation, superior protein loading, and endosomal pH-responsive protein release. Eur J Pharm Biopharm. 2012;82(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  42. Qiao Z-Y, Cheng J, Ji R, Du F-S, Liang D-H, Ji S-P, et al. Biocompatible acid-labile polymersomes from PEO-b-PVA derived amphiphilic block copolymers. RSC Adv. 2013;3(46):24345.

    Article  CAS  Google Scholar 

  43. Rodríguez-Hernández J, Lecommandoux S. Reversible inside−out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J Am Chem Soc. 2005;127(7):2026–7.

    Article  PubMed  Google Scholar 

  44. Du J, Tang Y, Lewis AL, Armes SP. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J Am Chem Soc. 2005;127(51):17982–3.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Eisenberg A. Multiple morphologies of “crew-cut” aggregates of polystyrene- b -poly(acrylic acid) block copolymers. Science. 1995;268(5218):1728–31.

    Article  CAS  PubMed  Google Scholar 

  46. Chiu H-C, Lin Y-W, Huang Y-F, Chuang C-K, Chern C-S. Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels. Angew Chem. 2008;120(10):1901–4.

    Article  Google Scholar 

  47. Massignani M, Canton I, Sun T, Hearnden V, MacNeil S, Blanazs A, et al. Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes. PLoS One. 2010;5(5):e10459.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yassin MA, Appelhans D, Mendes RG, Rümmeli MH, Voit B. pH-dependent release of doxorubicin from fast photo-cross-linkable polymersomes based on benzophenone units. Chem Eur J. 2012;18(39):12227–31.

    Article  CAS  PubMed  Google Scholar 

  49. Koide A, Kishimura A, Osada K, Jang W-D, Yamasaki Y, Kataoka K. Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J Am Chem Soc. 2006;128(18):5988–9.

    Article  CAS  PubMed  Google Scholar 

  50. Dong W-F, Kishimura A, Anraku Y, Chuanoi S, Kataoka K. Monodispersed polymeric nanocapsules: spontaneous evolution and morphology transition from reducible hetero-PEG PICmicelles by controlled degradation. J Am Chem Soc. 2009;131(11):3804–5.

    Article  CAS  PubMed  Google Scholar 

  51. Kokuryo D, Anraku Y, Kishimura A, Tanaka S, Kano MR, Kershaw J, et al. SPIO-PICsome: development of a highly sensitive and stealth-capable MRI nano-agent for tumor detection using SPIO-loaded unilamellar polyion complex vesicles (PICsomes). J Control Release. 2013;169(3):220–7.

    Article  CAS  PubMed  Google Scholar 

  52. Kumar A, Lale SV, Mahajan S, Choudhary V, Koul V. ROP and ATRP fabricated dual targeted redox sensitive polymersomes based on pPEGMA-PCL-ss-PCL-pPEGMA triblock copolymers for breast cancer therapeutics. ACS Appl Mater Interfaces. 2015;7(17):9211–27.

    Article  CAS  PubMed  Google Scholar 

  53. Cerritelli S, Velluto D, Hubbell JA. PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules. 2007;8(6):1966–72.

    Article  CAS  PubMed  Google Scholar 

  54. van Hell AJ, Crommelin DJA, Hennink WE, Mastrobattista E. Stabilization of peptide vesicles by introducing inter-peptide disulfide bonds. Pharm Res. 2009;26(9):2186–93.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Park KM, Lee D-W, Sarkar B, Jung H, Kim J, Ko YH, et al. Reduction-sensitive, robust vesicles with a non-covalently modifiable surface as a multifunctional drug-delivery platform. Small. 2010;6(13):1430–41.

    Article  CAS  PubMed  Google Scholar 

  56. Ren T, Wu W, Jia M, Dong H, Li Y, Ou Z. Reduction-cleavable polymeric vesicles with efficient glutathione-mediated drug release behavior for reversing drug resistance. ACS Appl Mater Interfaces. 2013;5(21):10721–30.

    Article  CAS  PubMed  Google Scholar 

  57. Lee SH, Gupta MK, Bang JB, Bae H, Sung H-J. Current progress in reactive oxygen species (ROS)-responsive materials for biomedical applications. Adv Healthc Mater. 2013;2(6):908–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16(11):1295–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vasdekis AE, Scott EA, O’Neil CP, Psaltis D, Hubbell Jeffrey A. Precision intracellular delivery based on optofluidic polymersome rupture. ACS Nano. 2012;6(9):7850–7.

    Article  CAS  PubMed  Google Scholar 

  61. Deng Z, Qian Y, Yu Y, Liu G, Hu J, Zhang G, et al. Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells. J Am Chem Soc. 2016;138(33):10452–66.

    Article  CAS  PubMed  Google Scholar 

  62. Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci. 2015;112(27):8260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Najafi M, Habibi M, Fokkink R, Hennink WE, Vermonden T. LCST polymers with UCST behavior. Soft Matter. 2021;17(8):2132–41.

    Article  CAS  PubMed  Google Scholar 

  64. Liu F, Kozlovskaya V, Medipelli S, Xue B, Ahmad F, Saeed M, et al. Temperature-sensitive polymersomes for controlled delivery of anticancer drugs. Chem Mater. 2015;27(23):7945–56.

    Article  CAS  Google Scholar 

  65. Kozlovskaya V, Liu F, Yang Y, Ingle K, Qian S, Halade GV, et al. Temperature-responsive polymersomes of poly(3-methyl- N-vinylcaprolactam)- block-poly(N-vinylpyrrolidone) to decrease doxorubicin-induced cardiotoxicity. Biomacromolecules. 2019;20(10):3989–4000.

    Article  CAS  PubMed  Google Scholar 

  66. Feng A, Yuan J. Smart nanocontainers: progress on novel stimuli-responsive polymer vesicles. Macromol Rapid Commun. 2014;35(8):767–79.

    Article  CAS  PubMed  Google Scholar 

  67. Hou W, Liu R, Bi S, He Q, Wang H, Gu J. Photo-responsive polymersomes as drug delivery system for potential medical applications. Molecules. 2020;25(21):5147.

    Article  PubMed Central  Google Scholar 

  68. Mónica Cristina García, 13 - Stimuli-responsive polymersomes for drug delivery applications, In Woodhead Publishing Series in Biomaterials, Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Woodhead Publishing, 2019, Pages 345-392, ISBN 9780081019955, https://doi.org/10.1016/B978-0-08-101995-5.00019-2.

  69. Zhou Y, Chen R, Yang H, Bao C, Fan J, Wang C, et al. Light-responsive polymersomes with a charge-switch for targeted drug delivery. J Mater Chem B. 2020;8(4):727–35.

    Article  CAS  PubMed  Google Scholar 

  70. Oliveira H, Pérez-Andrés E, Thevenot J, Sandre O, Berra E, Lecommandoux S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Control Release. 2013;169(3):165–70.

    Article  CAS  PubMed  Google Scholar 

  71. Sanson C, Diou O, Thévenot J, Ibarboure E, Soum A, Brûlet A, et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano. 2011;5(2):1122–40.

    Article  CAS  PubMed  Google Scholar 

  72. Yang X, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Steeber DA, et al. Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials. 2010;31(34):9065–73.

    Article  CAS  PubMed  Google Scholar 

  73. Rikken RSM, Kerkenaar HHM, Nolte RJM, Maan JC, van Hest JCM, Christianen PCM, et al. Probing morphological changes in polymersomes with magnetic birefringence. Chem Commun. 2014;50(40):5394–6.

    Article  CAS  Google Scholar 

  74. Wang A, Fan W, Yang T, He S, Yang Y, Yu M, et al. Liver-target and glucose-responsive polymersomes toward mimicking endogenous insulin secretion with improved hepatic glucose utilization. Adv Funct Mater. 2020;30(13):1–15.

    Article  Google Scholar 

  75. Yang H, Zhang C, Li C, Liu Y, An Y, Ma R, et al. Glucose-responsive polymer vesicles templated by α-CD/PEG inclusion complex. Biomacromolecules. 2015;16(4):1372–81.

    Article  CAS  PubMed  Google Scholar 

  76. Gouveia VM, Rizzello L, Nunes C, Poma A, Ruiz-Perez L, Oliveira A, et al. Macrophage targeting pH responsive polymersomes for glucocorticoid therapy. Pharmaceutics. 2019;11(11):1–15.

    Article  Google Scholar 

  77. Tan J, Deng Z, Liu G, Hu J, Liu S. Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics. Biomaterials. 2018;178:608–19.

    Article  CAS  PubMed  Google Scholar 

  78. Lale SV, Kumar A, Prasad S, Bharti AC, Koul V. Folic acid and trastuzumab functionalized redox responsive polymersomes for intracellular doxorubicin delivery in breast cancer. Biomacromolecules. 2015;16(6):1736–52.

    Article  CAS  PubMed  Google Scholar 

  79. Sanson C, Le Meins JF, Schatz C, Soum A, Lecommandoux S. Temperature responsive poly(trimethylene carbonate)-block-poly(l-glutamic acid) copolymer: polymersomes fusion and fission. Soft Matter. 2010;6(8):1722–30.

    Article  CAS  Google Scholar 

  80. Rifaie-Graham O, Ulrich S, Galensowske NFB, Balog S, Chami M, Rentsch D, et al. Wavelength-selective light-responsive DASA-functionalized polymersome nanoreactors. J Am Chem Soc. 2018;140(25):8027–36.

    Article  CAS  PubMed  Google Scholar 

  81. Cabane E, Malinova V, Menon S, Palivan CG, Meier W. Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter. 2011;7(19):9167–76.

    Article  CAS  Google Scholar 

  82. Kim H, Kang YJ, Jeong ES, Kang S, Kim KT. Glucose-responsive disassembly of polymersomes of sequence-specific boroxole-containing block copolymers under physiologically relevant conditions. ACS Macro Lett. 2012;1(10):1194–8.

    Article  CAS  PubMed  Google Scholar 

  83. Blackman LD, Oo ZY, Qu Y, Gunatillake PA, Cass P, Locock KES. Antimicrobial honey-inspired glucose-responsive nanoreactors by polymerization-induced self-assembly. ACS Appl Mater Interfaces. 2020;12(10):11353–62.

    Article  CAS  PubMed  Google Scholar 

  84. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheng L, Yang L, Meng F, Zhong Z. Protein nanotherapeutics as an emerging modality for cancer therapy. Adv Healthc Mater. 2018;7(20):1800685.

    Article  Google Scholar 

  86. Marguet M, Bonduelle C, Lecommandoux S. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chem Soc Rev. 2013;42(2):512–29.

    Article  CAS  PubMed  Google Scholar 

  87. Marguet M, Edembe L, Lecommandoux S. Polymersomes in polymersomes: multiple loading and permeability control. Angew Chem Int Ed. 2012;51(5):1173–6.

    Article  CAS  Google Scholar 

  88. Ahmed F, Discher DE. Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles. J Control Release. 2004;96(1):37–53.

    Article  CAS  PubMed  Google Scholar 

  89. Christian DA, Cai S, Bowen DM, Kim Y, Pajerowski JD, Discher DE. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur J Pharm Biopharm. 2009;71(3):463–74.

    Article  CAS  PubMed  Google Scholar 

  90. Lalatsa A, Schätzlein AG, Mazza M, Le TBH, Uchegbu IF. Amphiphilic poly(l-amino acids) — new materials for drug delivery. J Control Release. 2012;161(2):523–36.

    Article  CAS  PubMed  Google Scholar 

  91. Levine DH, Ghoroghchian PP, Freudenberg J, Zhang G, Therien MJ, Greene MI, et al. Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods. 2008;46(1):25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu J, Lee H, Allen C. Formulation of drugs in block copolymer micelles: drug loading and release. Curr Pharm Des. 2006;12(36):4685–701.

    Article  CAS  PubMed  Google Scholar 

  93. Song C, Labhasetwar V, Cui X, Underwood T, Levy RJ. Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: results with an acute dog model. J Control Release. 1998;54(2):201–11.

    Article  CAS  PubMed  Google Scholar 

  94. Massignani M, Lomas H, Battaglia G. Polymersomes: a synthetic biological approach to encapsulation and delivery. In: Caruso F, editor. Modern techniques for nano- and microreactors/-reactions. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 115–54.

    Chapter  Google Scholar 

  95. Panchagnula R. Pharmaceutical aspects of paclitaxel. Int J Pharm. 1998;172(1–2):1–15.

    Article  CAS  Google Scholar 

  96. Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235(1–2):179–92.

    Article  CAS  PubMed  Google Scholar 

  97. Simón-Gracia L, Hunt H, Scodeller PD, Gaitzsch J, Braun GB, Willmore AMA, et al. Paclitaxel-loaded polymersomes for enhanced intraperitoneal chemotherapy. Mol Cancer Ther. 2016;15(4):670–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–8.

    Article  CAS  PubMed  Google Scholar 

  99. Bleul R, Thiermann R, Marten GU, House MJ, Pierre TGS, Häfeli UO, et al. Continuously manufactured magnetic polymersomes-a versatile tool (not only) for targeted cancer therapy. Nanoscale. 2013;5(23):11385–93.

    Article  CAS  PubMed  Google Scholar 

  100. Photos PJ, Bacakova L, Discher B, Bates FS, Discher DE. Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release. 2003;90(3):323–34.

    Article  CAS  PubMed  Google Scholar 

  101. Li F, De Haan LHJ, Marcelis ATM, Leermakers FAM, Cohen Stuart MA, Sudhölter EJR. Pluronic polymersomes stabilized by core cross-linked polymer micelles. Soft Matter. 2009;5(20):4042–6.

    Article  CAS  Google Scholar 

  102. Mayer LD, Bally MB, Cullis PR. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta Biomembr. 1986;857(1):123–6.

    Article  CAS  Google Scholar 

  103. Broz P, Ben-Haim N, Grzelakowski M, Marsch S, Meier W, Hunziker P. Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. J Cardiovasc Pharmacol. 2008;51(3):246–52.

    Article  CAS  PubMed  Google Scholar 

  104. Qin S, Geng Y, Discher DE, Yang S. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv Mater. 2006;18(21):2905–9.

    Article  CAS  Google Scholar 

  105. LoPresti C, Lomas H, Massignani M, Smart T, Battaglia G. Polymersomes: nature inspired nanometer sized compartments. J Mater Chem. 2009;19(22):3576–90.

    Article  CAS  Google Scholar 

  106. Wang F, Gao J, Xiao J, Du J. Dually gated polymersomes for gene delivery. Nano Lett. 2018;18(9):5562–8.

    Article  CAS  PubMed  Google Scholar 

  107. Laskar P, Dey J, Banik P, Mandal M, Ghosh SK. In vitro drug and gene delivery using random cationic copolymers forming stable and pH-sensitive polymersomes. Macromol Biosci. 2017;17(4):1–14.

    Article  Google Scholar 

  108. Egli S, Schlaad H, Bruns N, Meier W. Functionalization of block copolymer vesicle surfaces. Polymers. 2011;3(1):252–80.

    Article  CAS  Google Scholar 

  109. Egli S, Nussbaumer MG, Balasubramanian V, Chami M, Bruns N, Palivan C, et al. Biocompatible functionalization of polymersome surfaces: a new approach to surface immobilization and cell targeting using polymersomes. J Am Chem Soc. 2011;133(12):4476–83.

    Article  CAS  PubMed  Google Scholar 

  110. Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers. 2019;11(5):640.

    Google Scholar 

  111. Mona Alibolandi, Mahsa Shahriari, Mohammad Ramezani, Chapter 16 - Smart Polymersomes as Intelligent Nanomedicines in Cancer Treatment, Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics, Academic Press, 2019, Pages 343-371, ISBN 9780128169636, https://doi.org/10.1016/B978-0-12-816963-6.00016-9.

  112. Alibolandi M, Abnous K, Sadeghi F, Hosseinkhani H, Ramezani M, Hadizadeh F. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: in vitro and in vivo evaluation. Int J Pharm. 2016;500(1–2):162–78.

    Article  CAS  PubMed  Google Scholar 

  113. Fang Y, Yang W, Cheng L, Meng F, Zhang J, Zhong Z. EGFR-targeted multifunctional polymersomal doxorubicin induces selective and potent suppression of orthotopic human liver cancer in vivo. Acta Biomater. 2017;64:323–33.

    Article  CAS  PubMed  Google Scholar 

  114. Porges E, Jenner D, Taylor AW, Harrison JSP, de Grazia A, Hailes AR, et al. Antibiotic-loaded polymersomes for clearance of intracellular Burkholderia thailandensis. ACS Nano. 2021;15(12):19284–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Colley HE, Hearnden V, Avila-Olias M, Cecchin D, Canton I, Madsen J, et al. Polymersome-mediated delivery of combination anticancer therapy to head and neck cancer cells: 2D and 3D in vitro evaluation. Mol Pharm. 2014;11(4):1176–88.

    Article  CAS  PubMed  Google Scholar 

  116. Wang L, Chierico L, Little D, Patikarnmonthon N, Yang Z, Azzouz M, et al. Encapsulation of biomacromolecules within polymersomes by electroporation. Angew Chem Int Ed. 2012;51(44):11122–5.

    Article  CAS  Google Scholar 

  117. Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2017;12(7):648–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barnier Quer C, Robson Marsden H, Romeijn S, Zope H, Kros A, Jiskoot W. Polymersomes enhance the immunogenicity of influenza subunit vaccine. Polym Chem. 2011;2(7):1482.

    Article  Google Scholar 

  119. Tai W, Mo R, Di J, Subramanian V, Gu X, Buse JB, et al. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules. 2014;15(10):3495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kelly JM, Gross AL, Martin DR, Byrne ME. Polyethylene glycol-b-poly(lactic acid) polymersomes as vehicles for enzyme replacement therapy. Nanomedicine. 2017;12(23):2591–606.

    Article  CAS  PubMed  Google Scholar 

  121. Chen P-C, Prasannan A, Huang C-C, Tang S-F, Tsai HC. Fabrication of self-assembled vesicle nanoparticles of poly(l -lysine)–arachidic acid conjugates for a vascular endothelial growth factor carrier. Mater Sci Eng C. 2017;78:756–62.

    Article  CAS  Google Scholar 

  122. Liu Q, Zhu H, Qin J, Dong H, Du J. Theranostic vesicles based on bovine serum albumin and poly(ethylene glycol)- block -poly(<scp>l</scp> -lactic- co -glycolic acid) for magnetic resonance imaging and anticancer drug delivery. Biomacromolecules. 2014;15(5):1586–92.

    Article  CAS  PubMed  Google Scholar 

  123. Hao H, Ma Q, Huang C, He F, Yao P. Preparation, characterization, and in vivo evaluation of doxorubicin loaded BSA nanoparticles with folic acid modified dextran surface. Int J Pharm. 2013;444(1–2):77–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Silva, R.Y.P., da Silva, L.C.G., Ricardo, M.F.C.S., de Lima, Á.A.N. (2022). Polymersomes for Targeted Drug and Gene Delivery Systems. In: Barabadi, H., Mostafavi, E., Saravanan, M. (eds) Pharmaceutical Nanobiotechnology for Targeted Therapy. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-12658-1_14

Download citation

Publish with us

Policies and ethics