Skip to main content

Soybean Improvement for Waterlogging Tolerance

  • Chapter
  • First Online:
Soybean Improvement

Abstract

Flooding is the second most destructive abiotic stress affecting soybean yield worldwide. Waterlogging or flooding causes losses in soybean grain yield mainly due to root damages, reduction in root nodule development, insufficient water and nutrient uptake, chlorosis due to weakened photosynthesis and carbon assimilation, and plant death. Waterlogging tolerance can be observed and measured on the basis of relative germination capability, plant survival rate, foliar damage score, stem elongation rate, differences in leaf chlorosis, coefficient based on yield/dry weight reduction due to waterlogging stress, and yield attributes. Conventional breeding method like pedigree selection leads to development of waterlogging-tolerant varieties, i.e., JS 97-52, NRC 128, etc., in India. Several major and minor significant QTLs associated with waterlogging tolerance have been identified worldwide. Availability of high-density genetic maps, EST sequencing and analysis, gene expression analysis, assembling of cDNA and oligo arrays, sequencing and comparison of homologous segments, etc. may further advance the understanding of underlying mechanism of waterlogging tolerance in soybean. Due to advances in genomics and cultural aspects, we will be able to further face the challenges of different kind of abiotic stresses including flooding in soybean cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed F, Rafii M, Ismail MR, Juraimi AS, Rahim H, Asfaliza R, Latif MA (2013) Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. Biomed Res Int:1–10. https://doi.org/10.1155/2013/963525

  • Ahsan N, Lee DG, Lee SH, Kang KY, Bahk JD, Choi MS, Lee IJ, Renaut J, Lee BH (2007a) A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Plant 131(4):555–570

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Lee DG, Lee SH, Lee KW, Bahk JD, Lee BH (2007b) A proteomic screen and identification of waterlogging-regulated proteins in tomato roots. Plant Soil 295(1):37–51

    Article  CAS  Google Scholar 

  • Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, Oh KW, Yun BW, Lee BH (2010) Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. J Biosci 35(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • Alamgir H, Uddin SN (2011) Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Aust J Crop Sci 5(9):1094–1110

    Google Scholar 

  • Ali MJ, Xing G, He J et al (2020) Detecting the QTL-allele system controlling seed-flooding tolerance in a nested association mapping population of soybean. Crop J 8(5):781–792

    Article  Google Scholar 

  • Andrade CA, de Souza KR, de Oliveira SM, da Silva DM, Alves JD (2018) Hydrogen peroxide promotes the tolerance of soybeans to waterlogging. Scientia Hortic 232:40–45

    Article  CAS  Google Scholar 

  • Anonymous (2015) Annual report 2014–2015. Directorate of Soybean Research, Indore

    Google Scholar 

  • Anonymous (2018) Annual report 2017–2018. ICAR-Indian Institute of Soybean Research, Indore

    Google Scholar 

  • Anonymous (2019) Annual report 2018–2019. ICAR-Indian Institute of Soybean Research, Indore

    Google Scholar 

  • Anonymous (2020) Annual Report 2019, ICAR-Indian Institute of Soybean Research, Indore

    Google Scholar 

  • Anonymous (2021) Director’s report of AICRP on Soybean 2020–21. ICAR-Indian Institute of Soybean Research, Indore

    Google Scholar 

  • Ara R, Mannan MA, Khaliq QA, Miah MU (2015) Waterlogging tolerance of soybean. Bangladesh Agron J 18(2):105–109

    Article  Google Scholar 

  • Arya M, Bhatia VS, Ansari MM, Husain SM (2014) Soybean (Glycine max L.) Genotypes for Water Logging Tolerance. Soybean Research (Special Issue I). 15–21

    Google Scholar 

  • Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein sub compartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacanamwo M, Purcell LC (1999a) Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Sci 39:143–149

    Article  Google Scholar 

  • Bacanamwo M, Purcell LC (1999b) Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. J Exp Bot 50:689–696

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek L (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339. https://doi.org/10.1146/annurev.arplant.59.032607.092752

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, Perata P, Voesenek LA, van Dongen JT (2012a) Making sense of low oxygen sensing. Trends Plant Sci 17(3):129–138

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Lee SC, Brinton E (2012b) Waterproofing crops: effective flooding survival strategies. Plant Physiol 160:1698–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borella J, Amarante LD, Oliveira DD, Oliveira AC, Braga EJ (2014) Waterlogging-induced changes in fermentative metabolism in roots and nodules of soybean genotypes. Sci Agric 71:499–508

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment (crop genetic improvement). Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bragina TV, Rodionova NA, Grinieva GM (2003) Ethylene production and activation of hydrolytic enzymes during acclimation of maize seedlings to partial flooding. Russ J Plant Physiol 50(6):794–798

    Article  CAS  Google Scholar 

  • Calvo-Polanco M, Señorans J, Zwiazek JJ (2012) Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding. BMC Plant Biol 12(1):1–9

    Article  Google Scholar 

  • Calyxt Inc (2019) First commercial sale of Calyxt high oleic soybean oil. Calyxt Inc., Minneapolis/St. Paul

    Google Scholar 

  • Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232. https://doi.org/10.1186/s13059-015-0796-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Satpute GK, Verma RK, Kumawat G, Rajesh V, Singh M (2019) Strategies for management of abiotic stresses in soybean. In: Directorate of Extension, DAC Sponsored Model Training Course on Climate resilient technologies and practices for Soybean Production held during Sept. 04–11, 2019 at ICAR-IISR, Indore

    Google Scholar 

  • Chandra S, Satpute GK, Nagar S, Singh M, Kumawat G, Rajesh V et al (2020) Reproductive stage water-logging tolerance: a critical assessment of traits in Soybean. Soybean Res 18(2):93–101

    Google Scholar 

  • Chaudhary J, Shivaraj SM, Khatri P, Ye H, Zhou L, Klepadlo M, Dhakate P, Kumawat G, Patil G, Sonah H, Ratnaparkhe M (2019) Approaches, applicability, and challenges for development of climate-smart soybean. InGenomic designing of climatesmart oilseed crops. Springer, Cham, pp 1–74

    Google Scholar 

  • Cho SK, Kim JE, Park JA, Eom TJ, Kim WT (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580(13):3136–3144

    Article  CAS  PubMed  Google Scholar 

  • Collaku A, Harrison SA (2002) Losses in wheat due to waterlogging. Crop Sci 42:444–450

    Article  Google Scholar 

  • Colmer TD, Pedersen O (2008) Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol 177(4):918–926

    Article  CAS  PubMed  Google Scholar 

  • Colmer T, Voesenek L (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681. https://doi.org/10.1016/0098-8472[90]90012-S. 54 Plant, Abiotic Stress and Responses to Climate Change

    Article  CAS  PubMed  Google Scholar 

  • Cornelious B, Chen P, Chen Y, De Leon N, Shannon JG, Wang D (2005) Identification of QTLs underlying water-logging tolerance in soybean. Mol Breed 16(2):103–112

    Article  Google Scholar 

  • Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, Cermák T, Starker C, Voytas DF, Eamens AL, Stupar RM (2018) CRISPR/Cas9 and TALENs generate heritable mutation for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnol J 16:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Dat JF, Capelli N, Folzer H, Bourgeade P, Badot PM (2004) Sensing and signalling during plant flooding. Plant Physiol Biochem 42(4):273–282

    Article  CAS  PubMed  Google Scholar 

  • Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000) Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51(342):89–97

    Article  CAS  PubMed  Google Scholar 

  • Dhungana SK, Kim HS, Kang BK, Seo JH, Kim HT, Shin SO, Park CH, Kwak DY (2020) Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population. Plant Breed 139:626–638

    Article  CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Biol 48(1):223–250

    Article  CAS  Google Scholar 

  • El-Esawi MA, Elkelish A, Soliman M, Elansary HO, Zaid A, Wani SH (2020) Serratia marcescens BM1 enhances cadmium stress tolerance and phytoremediation potential of soybean through modulation of osmolytes, leaf gas exchange, antioxidant machinery, and stress-responsive genes expression. Antioxidants 9(1):43

    Article  CAS  PubMed Central  Google Scholar 

  • Fehr WR, Caviness CE (1977) Stages of soybean development. Ames: Iowa State University of Science and Technology

    Google Scholar 

  • Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97(3):863–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia N, da-Silva CJ, Cocco KL, Pomagualli D, de Oliveira FK, da Silva JV, de Oliveira AC, do Amarante L (2020) Waterlogging tolerance of five soybean genotypes through different physiological and biochemical mechanisms. Environ Exp Bot 172:103975

    Article  CAS  Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6(3):247–256

    Article  CAS  PubMed  Google Scholar 

  • Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol 141(2):685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Githiri S, Watanabe S, Harada K, Takahashi R (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed 125:613–618

    Article  CAS  Google Scholar 

  • Goggin DE, Colmer TD (2005) Intermittent anoxia induces oxidative stress in wheat seminal roots: assessment of the antioxidant defence system, lipid peroxidation and tissue solutes. Funct Plant Biol 32(6):495–506

    Article  CAS  PubMed  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Saxton AM (1988) Response of solid-seeded soybean to flood irrigation. II. Flood duration. Agron J 80:885–888. https://doi.org/10.2134/agronj1988.00021962008000060009x

    Article  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460(7258):1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12(7):934–940

    Article  CAS  PubMed  Google Scholar 

  • Henshaw TL, Gilbert RA, Scholberg JMS, Sinclair TR (2007) Soya bean (Glycine max L. Merr.) genotype response to early-season flooding: II. Above ground growth and biomass. J Agron Crop Sci 193:189–197

    Article  Google Scholar 

  • Hien DT, Loc NV, Abiko T, Mochizuki T (2020) The effects of a QTL for root development under hypoxia on yield of soybean exposed to 7-day waterlogging at seedling stage. Australian Journal of Crop Science 14(10):1682–1687

    Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Goda H (2007) Omics based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci U S A 104:6478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant 98(4):685–692

    Article  CAS  Google Scholar 

  • Horchani F, Khayati H, Raymond P, Brouquisse R, Aschi-Smiti S (2009) Contrasted effects of prolonged root hypoxia on tomato root and fruit (Solanum lycopersicum) metabolism. J Agron Crop Sci 195(4):313–318

    Article  CAS  Google Scholar 

  • Hwang TY, Sayama TA, Takahashi MA, Takada YO, Nakamoto YU, Funatsuki HI, Hisano HI, Sasamoto SH, Sato SH, Tabata SA, Kono IZ (2009) High-density integrated linkage map based on SSR markers in soybean. DNA research 16(4):213–225

    Google Scholar 

  • Hummer WS (2018) Linkage mapping for soybean (Glycine max) flood tolerance. M.Sc. thesis and dissertations, University of Arkansas, p 3074

    Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55(408):2473–2482

    Article  CAS  PubMed  Google Scholar 

  • Ito J, Heazlewood JL, Millar AH (2007) The plant mitochondrial proteome and the challenge of defining the posttranslational modifications responsible for signalling and stress effects on respiratory functions. Physiol Plant 129(1):207–224

    Article  CAS  Google Scholar 

  • Jackson M, Hall K (1987) Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits. Plant Cell Environ 10:121–130. https://doi.org/10.1111/1365-3040.ep11602085

    Article  CAS  Google Scholar 

  • Kim YH, Hwang SJ, Waqas M, Khan AL, Lee JH, Lee JD, Nguyen HT, Lee IJ (2015) Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Front Plant Sci 6:714

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MY, Lee S, Van K, Kim TH, Jeong SC, Choi IY, Kim DS, Lee YS, Park D, Ma J, Kim WY (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proceedings of the National Academy of Sciences 107(51):22032–7

    Google Scholar 

  • Komatsu S, Wada T, Abaléa Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K (2009) Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res 8(10):4487–4499

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Kobayashi Y, Nishizawa K, Nanjo Y, Furukawa K (2010) Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids 39(5):1435–1449

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Chandra S, Talukdar A, Yadav RR, Saini M, Poonia S, Lal SK (2019) Genetic studies on seed coat permeability and viability in RILs derived from an inter-specific cross of soybean [Glycine max (L.) Merrill]. Ind J Genet Plant Breed 79(1):48–55

    Google Scholar 

  • Kumutha D, Sairam RK, Ezhilmathi K, Chinnusamy V, Meena RC (2008) Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): upregulation of sucrose synthase and alcohol dehydrogenase. Plant Sci 175(5):706–716

    Article  CAS  Google Scholar 

  • Lai MC, Lai ZY, Jhan LH, Lai YS, Kao CF (2021) Prioritization and evaluation of flooding tolerance genes in soybean [Glycine max (L.) Merr.]. Frontiers in genetics 11:612131

    Google Scholar 

  • Lee YG, Jeong N, Kim JH, Lee K, Kim KH, Pirani A, Ha BK, Kang ST, Park BS, Moon JK, Kim N (2015) Development, validation and genetic analysis of a large soybean SNP genotyping array. The Plant Journal 81(4):625–636

    Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012a) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang L, Li Y, Ma L, Bu N, Ma C (2012b) Changes in photosynthesis, antioxidant enzymes and lipid peroxidation in soybean seedlings exposed to UV-B radiation and/or Cd. Plant Soil 352(1):377–387

    Article  CAS  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013a) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691. https://doi.org/10.1038/nbt.2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Zhao SC, Ma JX, Li D, Yan L, Li J, Qi XT, Guo XS, Zhang L, He WM (2013b) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics 14:579

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Li W, Zhang Y, Xia C, Liu Y, Wang C, Xu R, Zhang L (2019) Identification of genes/proteins related to submergence tolerance by transcriptome and proteome analyses in soybean. Sci Rep 9(1):1–6

    Google Scholar 

  • Linkeme G, Board JE, Musgrave ME (1998) Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci 38:1576–1584

    Article  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Schortemeyer M (2001) Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Funct Plant Biol 28:1121–1131. https://doi.org/10.1071/PP01089

    Article  Google Scholar 

  • Mira MM, Huang S, Hill RD, Stasolla C (2021) Tolerance to excess moisture in soybean is enhanced by over-expression of the Glycine max Phytoglobin (GmPgb1). Plant Physiol Biochem 159:322–334

    Article  CAS  PubMed  Google Scholar 

  • Mohanty HK, Khush GS (1985) Diallel analysis of submergence tolerance in rice, Oryza sativa L. Theor Appl Genet 70:467–473

    Article  CAS  PubMed  Google Scholar 

  • Nakayama N, Hashimoto S, Shimada S, Takahashi M, Kim YH, Oya T, Arihara J (2004) The effect of flooding stress at the germination stage on the growth of soybean in relation to initial seed moisture content. Jpn J Crop Sci 73:323–329

    Article  Google Scholar 

  • Nanjo Y, Skultety L, Ashraf Y, Komatsu S (2010) Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. J Proteome Res 9(8):3989–4002

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VL, Dang TT, Chu HD, Nakamura T, Abiko T, Mochizuki T (2021) Near-isogenic lines of soybean confirm a QTL for seed waterlogging tolerance at different temperatures. Euphytica 217(1):1–10

    Google Scholar 

  • Nguyen VT, Vuong TD, VanToai T, Lee JD, Wu X, RoufMian MA (2012) Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci 52:2481–2493

    Article  CAS  Google Scholar 

  • Nguyen VL, Takahashi R, Githiri SM et al (2017) Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.). Theor Appl Genet 130:743–755. https://doi.org/10.1007/s00122-016-2847-3

    Article  CAS  PubMed  Google Scholar 

  • Nie X, Durnin DC, Igamberdiev AU, Hill RD (2006) Cytosolic calcium is involved in the regulation of barley hemoglobin gene expression. Planta 223(3):542–549

    Article  CAS  PubMed  Google Scholar 

  • Ohashi Y, Nakayama N, Saneoka H, Mohapatra PK, Fujita K (2009) Differences in the responses of stem diameter and pod thickness to drought stress during the grain filling stage in soybean plants. Acta Physiol Plant 31:271–277. https://doi.org/10.1007/s11738-008-0229-4

    Article  Google Scholar 

  • Oosterhuis DM, Scott HD, Hampton RE, Wullschleter SD (1990) Physiological response of two soybean [Glycine max (L.) Merr.] cultivars to short-term flooding. Environ Exp Bot 30:85–92

    Article  Google Scholar 

  • Qi X, Li Q, Ma X, Qian C, Wang H, Ren N, Shen C, Huang S, Xu X, Xu Q, Chen X (2019) Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Plant Cell Environ 42(5):1458–1470

    Article  CAS  PubMed  Google Scholar 

  • Rajendran A, Lal SK, Jain SK, Dhandapani R (2019) Screening of soybean genotypes for pre emergence anaerobic stress tolerance to water logging. J Pharmacogn Phty Chem SP2:01–03

    Google Scholar 

  • Rathore TR, Warsi MZK (1998) Production of maize under excess soil moisture (waterlogging) conditions (p. 23). In: Proceedings of the 2nd Asian Regional Maize Workshop PACARD, Laos Banos, Philippines

    Google Scholar 

  • Reyna N, Cornelious B, Shannon JG, Sneller CH (2003) Evaluation of a QTL for waterlogging tolerance in Southern Soybean Germplasm. Crop Sci 43(6):2077–2082

    Article  Google Scholar 

  • Rhine MD, Stevens G, Shannon G, Wrather A, Sleper D (2010) Yield and nutritional responses to waterlogging of soybean cultivars. Irrig Sci 28:135–142

    Article  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141(2):357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizal G, Karki S (2011) Research Article Alcohol dehydrogenase (ADH) activity in soybean (Glycine max [L.] Merr.) under flooding stress. Electron J Plant Breed 2(1):50–57

    Google Scholar 

  • Rosenzweig C, Tubiello FN, Goldberg R, Mills E, Bloomfield J (2002) Increased crop damage in the US from excess precipitation under climate change. Glob Environ Chang 12(3):197–202

    Article  Google Scholar 

  • Russell DA, Sachs MM (1992) Protein synthesis in maize during anaerobic and heat stress. Plant Physiol 99(2):615–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008) Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant 52(3):401

    Article  CAS  Google Scholar 

  • Sakata K, Ohyanagi H, Nobori H, Nakamura T, Hashiguchi A, Nanjo Y, Mikami Y, Yunokawa H, Komatsu S (2009) Soybean proteome database: a data resource for plant differential omics. J Proteome Res 8(7):3539–3548

    Article  CAS  PubMed  Google Scholar 

  • Sakazono S, Nagata T, Matsuo R, Kajihara S, Watanabe M, Ishimoto M, Shimamura S, Harada K, Takahashi R, Mochizuki T (2014) Variation in root development response to flooding among 92 soybean lines during early growth stages. Plant Prod Sci 17:228–236

    Article  Google Scholar 

  • Sallam A, Scott HD (1987) Effects of prolonged flooding on soybeans during early vegetative growth. Soil Sci 144:61–66

    Article  Google Scholar 

  • Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K et al (2017) Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol 214:1403–1407

    Article  PubMed  Google Scholar 

  • Satpute GK, Ratnaparkhe MB, Chandra S et al (2020) Breeding and molecular approaches for evolving drought-tolerant Soybeans. In: Giri B, Sharma MP (eds) Plant stress biology. Springer, Cham, pp 83–130. https://doi.org/10.1007/978-981-15-9380-2_4

    Chapter  Google Scholar 

  • Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M (2009) QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci 176:514–521

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–83

    Google Scholar 

  • Scott H, DeAngulo J, Daniels M, Wood L (1989) Flood duration effects on soybean growth and yield. Agron J 81:631–636

    Article  Google Scholar 

  • Shannon J, Stevens W, Wiebold W, McGraw R, Sleper D, Nguyen H (2005) Breeding soybeans for improved tolerance to flooding. In: Proceedings of the 30th Soybean research conference, American Seed Trade Association, Chicago, IL, USA

    Google Scholar 

  • Shi F, Yamamoto R, Shimamura S, Hiraga S, Nakayama N, Nakamura T, Yukawa K, Hachinohe M, Matsumoto H, Komatsu S (2008) Cytosolic ascorbate peroxidase 2 (cAPX 2) is involved in the soybean response to flooding. Phytochemistry 69(6):1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17(2):131–137

    Article  CAS  Google Scholar 

  • Shrivastava AN, Pandey SK, Kobayashi S (2014) Influence of excessive moisture stress on genetic parameters in Soybean. Soybean Res 12(Special Issue 2):33–43

    Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PloS one:8(1):e54985

    Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2015) Fingerprinting soybean germplasm and its utility in genomic research. G3: Genes, genomes, genetics 5(10):1999–2006

    Google Scholar 

  • Song L, Valliyodan B, Prince S, Wan J, Nguyen HT (2018) Characterization of the XTH gene family: new insight to the roles in soybean flooding tolerance. Int J Mol Sci 19(9):2705

    Article  PubMed Central  Google Scholar 

  • Soybean Processors Association of India. (SOPA) (2019) https://www.thehindubusinessline.com/economy/agri-business/excess-rains-trim-soyabean-output-by-18-per-cent-to-899-lakh-tonnes-says-sopa/article29657049.ece

  • Splitter J (2019) The latest gene-edited food is a soybean oil that comes with zero trans fats. Forbes, New York

    Google Scholar 

  • Subbaiah CC, Sachs MM (2003) Molecular and cellular adaptations of maize to flooding stress. Ann Bot 91(2):119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suematsu K, Abiko T, Nguyen VL, Mochizuki T (2017) Phenotypic variation in root development of 162 soybean accessions under hypoxia condition at the seedling stage. Plant Prod Sci 20(3):323–335

    Article  Google Scholar 

  • Sun H, Zhao T, Gai J (2010) Inheritance and QTL mapping of waterlogging tolerance at seedling stage of soybean. Acta Agronomica Sinica 36(4):590–595

    Google Scholar 

  • Syed NH, Prince SJ, Mutava RN, Patil G, Li S, Chen W, Babu V, Joshi T, Khan S, Nguyen HT (2015) Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean. J Exp Bot 66(22):7129–7149

    Article  CAS  PubMed  Google Scholar 

  • Tadege M, Dupuis I, Kuhlemeier C (1999) Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci 4(8):320–325

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Hosokawa H, Matsuzaki M (2006) N2 fixation of nodules and N absorption by soybean roots associated with ridge tillage on poorly drained upland fields converted from rice paddy fields. Soil Sci Plant Nutr 52:291–299

    Article  CAS  Google Scholar 

  • Tamang BG, Magliozzi JO, Maroof MS, Fukao T (2014) Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ 37:2350–2365. https://doi.org/10.1111/pce.12277

    Article  CAS  PubMed  Google Scholar 

  • USDA (2020) https://www.fasusdagov/data/oilseeds-world-markets-and-trade USDA (2020) Oilseeds – World Markets and Trade, a USDA Publication

  • Valliyodan B, Van Toai TT, Alves JD, De Fátima P, Goulart P, Lee JD, Fritschi FB, Rahman MA, Islam R, Shannon JG, Nguyen HT (2014) Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max). Int J Mol Sci 15(10):17622–17643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valliyodan B, Ye H, Song L, Murphy M, Shannon JG, Nguyen HT (2017) Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J Exp Bot 68(8):1835–1849

    CAS  PubMed  Google Scholar 

  • Van Veen H, Mustroph A, Barding GA, Vergeer-van Eijk M, Welschen-Evertman RA, Pedersen O et al (2013) Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell 25:4691–6707. https://doi.org/10.1105/tpc.113.119016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanToai T, Beuerlein A, Schmitthenner S, St Martin S (1994) Genetic variability for flooding tolerance in soybeans. Crop Sci 34:1112–1115

    Article  Google Scholar 

  • VanToai TT, St Martin SK, Chase K, Boru G, Schnipke V, Schmitthenner AF, Lark KG (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci 41:1247–1252

    Article  Google Scholar 

  • VanToai TT, Hoa TC, Hue TN, Nguyen HT (2010) Flooding tolerance of soybean [Glycine max (L.) Merr.] germplasm from Southeast Asia under field and screen-house environments. Open Agri J 4(1):38–46

    Article  Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhélin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281(16):11225–11234

    Article  CAS  PubMed  Google Scholar 

  • Visser EJ, Nabben RH, Blom CW, Voesenek LA (1997) Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Environ 20(5):647–653

    Article  CAS  Google Scholar 

  • Wang F, Zhao TJ, Yu DY, Chen SY, Gai JY (2008) Inheritance and QTL analysis of submergence tolerance at seedling stage in soybean. Acta Agron Sin 34:748–753

    Article  CAS  Google Scholar 

  • Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65:8674

    Article  CAS  PubMed  Google Scholar 

  • Wani SH (ed) (2018) Biochemical, physiological and molecular avenues for combating abiotic stress in plants. Academic Press, London

    Google Scholar 

  • Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M (2018) Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). Plant Mol Biol 97(6):469–487

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Zeng A, Chen P, Florez-Palacios L, Hummer W, Mokua J, Klepadlo M, Yan L, Ma Q, Cheng Y (2017a) An effective field screening method for flooding tolerance in soybean. Plant Breed 136(5):710–719

    Article  CAS  Google Scholar 

  • Wu C, Zeng A, Chen P, Hummer W, Mokua J, Shannon JG, Nguyen HT (2017b) Evaluation and development of flood-tolerant soybean cultivars. Plant Breed 136(6):913–923

    Article  CAS  Google Scholar 

  • Wu C, Chen P, Hummer W, Zeng A, Klepadlo M (2017c) Effect of flood stress on soybean seed germination in the field. Am J Plant Sci 8(01):53

    Article  CAS  Google Scholar 

  • Wu C, Mozzoni LA, Moseley D, Hummer W, Ye H, Chen P, Shannon G, Nguyen H (2020) Genome-wide association mapping of flooding tolerance in soybean. Mol Breed 40(1):1–4

    Article  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442(7103):705–708

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E (2006) Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proc Natl Acad Sci 103(15):6061–6066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H, Song L, Chen H, Valliyodan B, Cheng P, Ali L, Vuong T, Wu C, Orlowski J, Buckley B, Chen P (2018) A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean. Plant Cell Environ 41:2169–2182. https://doi.org/10.1111/pce.13190

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Sakata K, Nanjo Y, Komatsu S (2014) Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques. J Proteome 25(106):1–6

    Article  CAS  Google Scholar 

  • Yin X, Nishimura M, Hajika M, Komatsu S (2016) Quantitative proteomics reveals the flooding-tolerance mechanism in mutant and abscisic acid-treated soybean. J Proteome Res 15(6):2008–2025

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga S (2012) Improvement of soybean growth and yield (Glycine max L.) by inter-row stripe tillage in upland fields converted from paddy fields. JARQ 46:115–121

    Article  Google Scholar 

  • Youssef A, Laizet YH, Block MA, Marechal E, Alcaraz JP, Larson TR, Pontier D, Gaffé J, Kuntz M (2010) Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J 61(3):436–445

    Article  CAS  PubMed  Google Scholar 

  • Ytterberg AJ, Peltier JB, Van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140(3):984–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Chang F, Lv W, Sharmin RA, Wang Z, Kong J, Bhat JA, Zhao T (2019) Identification of QTN and candidate gene for seed-flooding tolerance in soybean [Glycine max (L.) Merr.] using genome-wide association study (GWAS). Gene 10(12):957

    Article  CAS  Google Scholar 

  • Zabalza A, Van Dongen JT, Froehlich A, Oliver SN, Faix B, Gupta KJ, Schmalzlin E, Igal M, Orcaray L, Royuela M, Geigenberger P (2009) Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiol 149(2):1087–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Tang Y, Yuan H, Wang L, Shang H, Ma C (2016) A meta-analysis based method for prioritizing candidate genes involved in a pre-specific function. Front Plant Sci 7:1914. https://doi.org/10.3389/fpls.2016.01914

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Core M, Buckler E, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, S. et al. (2022). Soybean Improvement for Waterlogging Tolerance. In: Wani, S.H., Sofi, N.u.R., Bhat, M.A., Lin, F. (eds) Soybean Improvement. Springer, Cham. https://doi.org/10.1007/978-3-031-12232-3_3

Download citation

Publish with us

Policies and ethics