Skip to main content

Advertisement

Log in

Genome-wide association mapping of flooding tolerance in soybean

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Flooding threatens soybean production and limits soybean yields worldwide. The most effective and economic approach to decrease loss of yield due to flooding is to develop flood-tolerant soybean cultivars. The objective of this study was to identify genetic loci and candidate genes associated with flooding tolerance. A panel of 384 soybean plant introductions (PIs) was evaluated for flooding tolerance in two consecutive years in the field. The plant foliar damage score was used to index soybean response to flooding stress. A total of 42,291 SNP markers were obtained from the Illumina Infinium SoySNP50K BeadChip database. After filtration for quality control, 31,125 SNPs were used for genome-wide association mapping utilizing four different models (regression linear model (GLM), mixed linear model (MLM), compressed mixed linear model (CMLM), and enriched compressed mixed linear model (ECMLM)). Fourteen SNPs were identified to be associated with flooding tolerance across all environments and models at a significance level of −Log10 (P) ≥ 2.5. Five SNPs were located within the coding regions of five candidate genes. Several PIs with lower best linear unbiased prediction (BLUPs) of the breeding values and a large number of favorable flood-tolerant alleles were found as new genetic sources for use in soybean breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GWAS:

Genome-wide association study

SNP:

Single nucleotide polymorphism

SSR:

Simple sequence repeat

QTL:

Quantitative trait loci

PI:

Plant introduction

MAS:

Marker-assisted selection

Chr:

Chromosome

RIL:

Recombinant inbred line

FDS:

Foliar damage score

V5:

Soybean vegetative growth stage with five nodes on the main stem, beginning with the unifoliate node, with a fully developed leaf

R1:

Soybean reproductive growth stage with first flower at any node

LOD:

Log of the odds

GLM:

Regression linear model

MLM:

Mixed linear model

CMLM:

Compressed mixed linear model

ECMLM:

Enriched compressed mixed linear model

BLUP:

Best linear unbiased prediction

References

  • Ahmed F, Rafii M, Ismail MR, Juraimi AS, Rahim H, Asfaliza R, Latif MA (2013) Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. Biomed Res Int 2013:1–10. https://doi.org/10.1155/2013/963525

    Article  Google Scholar 

  • Bailey-Serres J, Lee SC, Brinton E (2012) Waterproofing crops: effective flooding survival strategies. Plant Physiol 160:1698–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banti V, Loreti E, Novi G, Santaniello A, Alpi A, Perata P (2008) Heat acclimation and cross-tolerance against anoxia in Arabidopsis. Plant Cell Environ 31:1029–1037

    CAS  PubMed  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152:1471–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Board J (2008) Waterlogging effects on plant nutrient concentrations in soybean. J Plant Nutr 31:828–838

    CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Chen LQ, Luo JH, Cui ZH, Xue M, Wang L, Zhang XY, Pawlowski WP, He Y (2017) ATX3, ATX4, and ATX5 encode putative H3K4 methyltransferases and are critical for plant development. Plant Physiol 174:1795–1806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelious B, Chen P, Chen Y, Leon ND, Shannon J, Wang D (2005) Identification of QTLs underlying water-logging tolerance in soybean. Mol Breed 16:103–112

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals 20 using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Githiri S, Watanabe S, Harada K, Takahashi R (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed 125:613–618

    CAS  Google Scholar 

  • Gordon SG, Kowitwanich K, Pipatpongpinyo W, St. Martin SK, Dorrance AE (2007) Molecular marker analysis of soybean plant introductions with resistance to Phytophthora sojae. Phytopathology 97:113–118

    CAS  PubMed  Google Scholar 

  • Grau CR, Dorrance AE, Bond J, Russin JS (2004) Fungal diseases. In: Boerma HR, Specht JE (eds) Soybeans: Improvement, production, and uses, vol 16, 3rd edn. Agronomy Monograph. ASA CSSA-SSSA Press, Madison, pp 679–763

    Google Scholar 

  • Greene NV, Kenworthy KE, Quesenberry KH, Unruh JB, Sartain JB (2008) Variation and heritability estimates of common carpetgrass. Crop Sci 48:2017–2025

    Google Scholar 

  • Han Y, Teng W, Yu K, Poysa V, Anderson T, Qiu L, Lightfoot D, Li W (2008) Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD.SCAR derived markers. Euphytica 162:231–239

    CAS  Google Scholar 

  • Hao D, Chao M, Yin Z, Yu D (2012) Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica 186:919–931

    CAS  Google Scholar 

  • Hill WG, Weir BS (1988) Variances and covariance of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78

    CAS  PubMed  Google Scholar 

  • Hou F, Thseng F (1991) Studies on the flooding tolerance of soybean seed: varietal differences. Euphytica 57:169–173

    Google Scholar 

  • Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15:1

    PubMed  PubMed Central  Google Scholar 

  • Jackson MB, Ishizawa K, Ito O (2009) Evolution and mechanisms of plant tolerance to flooding stress. Ann Bot 103:137–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung YJ, Melencion SM, Lee ES, Park JH, Alinapon CV, Oh HT, Yun DJ, Chi YH, Lee SY (2015) Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress. Front Plant Sci 6:1141

    PubMed  PubMed Central  Google Scholar 

  • Kaler AS, Ray JD, Schapaugh WT, Andy King C, Purcell LC (2017) Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Theor Appl Genet 130:2203–2217

    CAS  PubMed  Google Scholar 

  • Kan G, Zhang W, Yang W, Ma D, Zhang D, Hao D, Hu Z, Yu D (2015) Association mapping of soybean seed germination under salt stress. Mol Gen Genomics 290:2147–2162

    CAS  Google Scholar 

  • Kim YH, Hwang SJ, Waqas M, Khan AL, Lee JH, Lee JD, Nguyen HT, Lee IJ (2015) Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Front Plant Sci 6:714

    PubMed  PubMed Central  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Liu X, Bradbury P, Yu J, Zhang YM, Todhunter RJ, Buckler ES, Zhang Z (2014) Enrichment of statistical power for genome-wide association studies. BMC Biol 12:73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linkemer G, Board JE, Musgrave ME (1998) Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci 38:1576–1584

    CAS  PubMed  Google Scholar 

  • Liu Y, Prasad R, Beard WA, Kedar PS, Hou EW, Shock DD, Wilson SH (2007) Coordination of steps in single-nucleotide base excision repair mediated by Apurinic/Apyrimidinic Endonuclease 1 and DNA Polymerase β. J Biol Chem 282:13532–13541

    CAS  PubMed  Google Scholar 

  • Mamidi S, Chikara S, Goos RJ, Hyten DL, Moghaddam SM, Cregan PB, McClean PE (2011) Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome 4:154–164

    CAS  Google Scholar 

  • Melencion SMB, Chi YH, Pham TT, Paeng SK, Wi SD, Lee C, Ryu SW, Koo SS, Lee SY (2017) RNA chaperone function of a universal stress protein in Arabidopsis confers enhanced cold stress tolerance in plants. Int J Mol Sci 18:2546

    PubMed Central  Google Scholar 

  • Nguyen VT, Vuong TD, VanToai T, Lee JD, Wu X, Mian MAR, Dorrance AE, Shannon JG, Nguyen HT (2012) Mapping of quantitative trait loci associated with resistance to and flooding tolerance in soybean. Crop Sci 52:2481–2493

    CAS  Google Scholar 

  • Nguyen CC, Nakaminami K, Matsui A, Kobayashi S, Kurihara Y, Toyooka K, Tanaka M, Seki M (2016) Oligouridylate binding protein 1b plays an integral role in plant heat stress tolerance. Front Plant Sci 7:853

    PubMed  PubMed Central  Google Scholar 

  • Oosterhuis D, Scott H, Hampton R, Wullschleger S (1990) Physiological responses of two soybean [Glycine max (L.) Merr] cultivars to short-term flooding. Environ Exp Bot 30:85–92

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhine MD, Stevens G, Shannon G, Wrather A, Sleper D (2010) Yield and nutritional responses to waterlogging of soybean cultivars. Irrig Sci 28:135–142

    Google Scholar 

  • Rosenzweig C, Tubiello FN, Goldberg R, Mills E, Bloomfield J (2002) Increased crop damage in the US from excess precipitation under climate change. Glob Environ Chang 12:197–202

    Google Scholar 

  • Russell DA, Wong DML, Sachs MM (1990) The anaerobic response of soybean. Plant Physiol 92:401–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M (2009) QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci 176:514–521

    CAS  PubMed  Google Scholar 

  • Schmitthenner AF (1985) Problems and progress in control of Phytophthora root rot of soybean. Plant Dis 69:362–368

    Google Scholar 

  • Scott H, DeAngulo J, Daniels M, Wood L (1989) Flood duration effects on soybean growth and yield. Agron J 81:631–636

    Google Scholar 

  • Shannon J, Stevens W, Wiebold W, McGraw R, Sleper D, Nguyen H (2005) Breeding soybeans for improved tolerance to flooding. Proceedings of the 30th Soybean Research Conference, American Seed Trade Association, Chicago

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8:e54985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan M, VanToai T, Fausey N, Beuerlein J, Parkinson R, Soboyejo A (2001) Evaluating on-farm flooding impacts on soybean. Crop Sci 41:93–100

    Google Scholar 

  • Sun S, Wu XL, Zhao JM, Wang YC, Tang QH, Yu DY, Gai JY, Xing H (2011) Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae. Plant Breed 30:139–143

    Google Scholar 

  • Tamang BG, Magliozzi JO, Maroof MS, Fukao T (2014) Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ 37:2350–2365

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Ailipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker DM, Saghai Maroof MA, Mideros S, Skoneczka JA, Nabati DA, Buss GR, Hoeschele I, Tyler BM, SKSt M, Dorrance AE (2010) Mapping quantitative trait loci for partial resistance to Phytophthora sojae in a soybean interspecific cross. Crop Sci 50:628–635

    Google Scholar 

  • VanToai TT, Beuerlein JE, Schmitthenner AF, St Martin SK (1994) Genetic variability for flooding tolerance in soybean. Crop Sci 34:1112–1115

    Google Scholar 

  • VanToai TT, St Martin SK, Chase K, Boru G, Schnipke V, Schmitthenner AF, Lark KG (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci 41:1247–1252

    Google Scholar 

  • VanToai TT, Hoa TTC, Hue NTN, Nguyen HT, Shannon JG, Rahman MA (2010) Flooding tolerance of soybean [Glycine max (L.) Merr.] germplasm from Southeast Asia under field and screen-house environments. Open Agric J 4:38–46

    Google Scholar 

  • Wang F, Zhao TJ, Yu DY, Chen SY, Gai JY (2008) Inheritance and QTL analysis of submergence tolerance at seedling stage in soybean. Acta Agron Sin 34:748–753

    CAS  Google Scholar 

  • Wang H, Waller L, Tripathy S, St. Martin SK, Zhou L, Krampis K, Tucker MD, Mao Y, Hoeschele I, Saghai Maroof MA, Tyler BM, Dorrance AE (2010) Analysis of genes underlying soybean quantitative trait loci conferring partial resistance to Phytophthora sojae. Plant Genome 3:23–40

    CAS  Google Scholar 

  • Wen Z, Tan R, Yuan J, Bales C, Du W, Zhang S, Chilvers MI, Schmidt C, Song Q, Cregan PB, Wang D (2014) Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15:1

    CAS  Google Scholar 

  • Wen Z, Boyse JF, Song Q, Cregan PB, Wang D (2015) Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics 16:671

    PubMed  PubMed Central  Google Scholar 

  • Weng C, Yu K, Anderson TR, Poysa V (2007) A quantitative trait loci influencing tolerance to Phytophthora root rot in the soybean cultivar ‘Conrad’. Euphytica 158:81–86

    Google Scholar 

  • Wu X, Zhou B, Zhao J, Guo N, Zhang B, Yang F, Chen S, Gai J, Xing H (2011) Identification of quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Plant Breed 130:144–149

    CAS  Google Scholar 

  • Wu C, Zeng A, Chen P, Florez-Palacios L, Hummer W, Mokua J, Klepadlo M, Yan L, Ma Q, Cheng Y (2017a) An effective field screening method for flood tolerance in soybean. Plant Breed 136:710–719

    CAS  Google Scholar 

  • Wu C, Chen P, Hummer W, Zeng A, Klepadio M (2017b) Effect of flood stress on Soybean seed germination in the field. Am J Plant Sci 8:53–68

    CAS  Google Scholar 

  • Yin X, Komatsu S (2015) Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress. J Proteome 119:183–195

    CAS  Google Scholar 

  • Youn JT, Van K, Lee JE, Kim WH, Yun HT, Kwon YU, Ryu YH, Lee SH (2008) Waterlogging effects on nitrogen accumulation and N2 fixation of supernodulating soybean mutants. J Crop Sci Biotechnol 11:111–118

    Google Scholar 

  • Zeng A, Chen P, Korth K, Hancock F, Pereira A, Brye K, Wu C, Shi A (2017) Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Mol Breed 37:30

    Google Scholar 

  • Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Song Q, Cregan PB, Nelson RL, Wang X, Wu J, Jiang G (2015) Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics 16:217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Song Q, Cregan PB, Jiang GL (2016) Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet 129:117–130

    CAS  PubMed  Google Scholar 

  • Zhu C, Core M, Buckler E, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the field support from Jonathan McCoy and David Hendrix at the Rice Research and Extension Center in Stuttgart, AR.

Funding

This study is financially supported by the United Soybean Board and the Arkansas Soybean Promotion Board.

Author information

Authors and Affiliations

Authors

Contributions

CW performed the all experiments and data analysis, and wrote the paper. LAM critically revised the manuscript and supervised the project. DM performed data analysis and revised the manuscript. WH participated in the field experiments. HY provided materials and revised the manuscript. PC designed experiment and supervised the project. GS and HN provided materials and supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leandro A. Mozzoni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1971 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Mozzoni, L.A., Moseley, D. et al. Genome-wide association mapping of flooding tolerance in soybean. Mol Breeding 40, 4 (2020). https://doi.org/10.1007/s11032-019-1086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1086-0

Keywords

Navigation