Skip to main content

Image-Guided Tumor Ablative Therapies

  • Chapter
  • First Online:
Demystifying Interventional Radiology

Abstract

The development of intra-arterial and percutaneous endovascular methods to access and treat pathologic lesions in the body has led to an increased role for interventional radiologists within multidisciplinary oncology treatment teams. There are multiple techniques that can be used for image-guided tumor ablation: non-thermal ablation techniques include chemical ablation and irreversible electroporation, whereas thermal ablation techniques for tumor treatment include radiofrequency ablation, cryoablation, and microwave ablation (MWA).

Non-thermal ablative therapy techniques utilize chemical and physical properties of compounds, such as the cell membrane, in order to cause protein denaturation and vascular occlusion of the tumor blood supply or to create permanent nanopores in the cell membrane that alters cell homeostasis leading to cell death. Thermal ablative therapy techniques utilize heat to destroy tumors, though the mechanisms differ; for example, microwave ablation [MWA] utilizes continuous realignment of water molecules to generate energy leading to tissue heating, while cryoablation utilizes conduction to remove heat and cause rapid tissue cooling leading to the formation of intracellular ice crystals (Hickey et al., J Vasc Interv Radiol 24:1167–88, 2013). Regardless of type, be it thermal or non-thermal ablative therapy, image-guided tumor ablation is deemed successful when a circumferential margin measuring 0.5 to 1.0 cm of healthy tissue surrounding the lesion is ablated (Hickey et al., J Vasc Interv Radiol 24:1167–88, 2013). This is termed a A0 ablation and is similar to how surgical resection seeks to achieve a certain margin of healthy tissue when a cancerous mass is resected (Hickey et al., J Vasc Interv Radiol 24:1167–88, 2013).

Thermal and non-thermal ablation techniques provide a unique clinical benefit separate from medical, surgical, and radiation therapy in the treatment of cancer (Hickey et al., J Vasc Interv Radiol 24:1167–88, 2013). This chapter outlines the current landscape of image-guided tumor ablative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Foltz G. Image-guided percutaneous ablation of hepatic malignancies. Semin Intervent Radiol. 2014;31(2):180–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hickey R, Vouche M, Sze DY, Hohlastos E, Collins J, Schirmang T, Memon K, Ryu RK, Sato K, Chen R, Gupta R. Cancer concepts and principles: primer for the interventional oncologist—part II. J Vasc Interv Radiol. 2013;24(8):1167–88.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shen A, Zhang H, Tang C, Chen Y, Wang Y, Zhang C, Wu Z. A systematic review of radiofrequency ablation versus percutaneous ethanol injection for small hepatocellular carcinoma up to 3 cm. J Gastroenterol Hepatol. 2013;28(5):793–800.

    Article  PubMed  Google Scholar 

  4. Ahmed M, Brace CL, Lee FT Jr, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology. 2011;258(2):351–69.

    Article  PubMed  Google Scholar 

  5. Lin SM, Lin CJ, Lin CC, Hsu CW, Chen YC. Randomised control trial comparing percutaneous radiofrequency thermal ablation, percutaneous ethanol injection, and percutaneous acetic acid injection to treat hepatocellular carcinoma of 3 cm or less. Gut. 2005;54(8):1151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith KA, Kim HS. Interventional radiology and image-guided medicine: interventional oncology. Semin Oncol. 2011;38(1):151–62.

    Article  PubMed  Google Scholar 

  7. Monchik JM, Donatini G, Iannuccilli J, Dupuy DE. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg. 2006;244(2):296–304.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fukumoto K, Kojima T, Tomonari H, Kontani K, Murai S, Tsujimoto F. Ethanol injection sclerotherapy for Baker’s cyst, thyroglossal duct cyst, and branchial cleft cyst. Ann Plast Surg. 1994;33(6):615–9.

    Article  CAS  PubMed  Google Scholar 

  9. Nixon IJ, Angelos P, Shaha AR, Rinaldo A, Williams MD, Ferlito A. Image-guided chemical and thermal ablations for thyroid disease: review of efficacy and complications. Head Neck. 2018;40(9):2103–15.

    Article  PubMed  Google Scholar 

  10. Aycock KN, Davalos RV. Irreversible electroporation: background, theory, and review of recent developments in clinical oncology. Bioelectricity. 2019;1(4):214–34.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Philips P, Hays D, Martin RCG. Irreversible electroporation ablation (IRE) of unresectable soft tissue tumors: learning curve evaluation in the first 150 patients treated. PLoS One. 2013;8(11):1–9.

    Article  Google Scholar 

  12. Saldanha DF, Khiatani VL, Carrillo TC, et al. Current tumor ablation technologies: basic science and device review. Semin Intervent Radiol. 2010;27(3):247–54.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee EW, Thai S, Kee ST. Irreversible electroporation: a novel image-guided cancer therapy. Gut Liver. 2010;4(Suppl 1):S99–104.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vlaisavljevich E, Maxwell A, Mancia L, Johnsen E, Cain C, Xu Z. Visualizing the histotripsy process: bubble cloud–cancer cell interactions in a tissue-mimicking environment. Ultrasound Med Biol. 2016;42(10):2466–77.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Allen SP, Hall TL, Cain CA, Hernandez-Garcia L. Controlling cavitation-based image contrast in focused ultrasound histotripsy surgery. Magn Reson Med. 2015;73(1):204–13.

    Article  PubMed  Google Scholar 

  16. Murad HY, Yu H, Luo D, Bortz EP, Halliburton GM, Sholl AB, Khismatullin DB. Mechanochemical disruption suppresses metastatic phenotype and pushes prostate cancer cells toward apoptosis. Mol Cancer Res. 2019;17(5):1087–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Eekeren RR, Boersma D, Holewijn S, Vahl A, de Vries JP, Zeebregts CJ, Reijnen MM. Mechanochemical endovenous ablation versus RADiOfrequeNcy ablation in the treatment of primary great saphenous vein incompetence (MARADONA): study protocol for a randomized controlled trial. Trials. 2014;15(1):1–7.

    Google Scholar 

  18. Murad HY, Bortz EP, Yu H, Luo D, Halliburton GM, Sholl AB, Khismatullin DB. Phenotypic alterations in liver cancer cells induced by mechanochemical disruption. Sci Rep. 2019;9(1):1–3.

    Article  Google Scholar 

  19. Kunzli BM, Abitabile P, Maurer CA. Radiofrequency ablation of liver tumors: actual limitations and potential solutions in the future. World J Hepatol. 2011;3(1):8–14.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR. Radiofrequency ablation of renal cell carcinoma: part I, indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol. 2005;185:64–71.

    Article  PubMed  Google Scholar 

  21. Crocetti L, de Baere T, Lencioni R. Quality improvement guidelines for radiofrequency ablation of liver tumors. Cardiovasc Intervent Radiol. 2010;33:11–7.

    Article  PubMed  Google Scholar 

  22. Kwan KG, Matsumoto ED. Radiofrequency ablation and cryoablation of renal tumors. Curr Oncol. 2007;14(1):34–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Izzo F, Granata V, Grassi R, Fusco R, Palaia R, Delrio P, et al. Radiofrequency ablation and MWA in liver tumours: an update. Oncologist. 2019;24:e990–e1005.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Modabber M, Martin J, Athreya S. Thermal versus impedance-based ablation of renal cell carcinoma: a meta-analysis. Cardiovasc Intervent Radiol. 2014;37:176–85.

    Article  PubMed  Google Scholar 

  25. Zhu JC, Yan TD, Morris DL. A systematic review of radiofrequency ablation for lung tumors. Ann Surg Oncol. 2008;15(6):1765–74.

    Article  PubMed  Google Scholar 

  26. Kurup AN, Callstrom MR. Image-guided percutaneous ablation of bone and soft-tissue tumors. Semin Intervent Radiol. 2010;27(3):276–84.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Papathanassiou ZG, Megas P, Petsas T, Papachristou DJ, Nilas J, Siablis D. Osteoid osteoma: diagnosis and treatment. Orthopedics. 2008;31(11):1118.

    PubMed  Google Scholar 

  28. Tam A, Ahrar K. Palliative interventions for pain in cancer patients. Semin Intervent Radiol. 2007;24(4):419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sheu YR, Hong K. Percutaneous lung tumor ablation. Tech Vasc Interv Radiol. 2013;16(4):239–52.

    Article  Google Scholar 

  30. Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr. Microwave tumor ablation: mechanism of action, clinical results and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S192–203.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liang P, Yu J, Lu MD, et al. Practice guidelines for ultrasound-guided percutaneous microwave ablation for hepatic malignancy. World J Gastroenterol. 2013;19(33):5430–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martin RC, Scoggins CR, McMasters KM. Safety and efficacy of microwave ablation of hepatic tumors: a prospective review of a 5-year experience. Ann Surg Oncol. 2010;17(1):171–8.

    Article  PubMed  Google Scholar 

  33. Castle SM, Salas N, Leveillee RJ. Initial experience using microwave ablation therapy for renal tumor treatment: 18-month follow-up. Urology. 2011;77(4):792–7.

    Article  PubMed  Google Scholar 

  34. Lu Q, Cao W, Huang L, et al. CT-guided percutaneous microwave ablation of pulmonary malignancies: results in 69 cases. World J Surg Oncol. 2012;10:80.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu J, Liang P, Yu XL, et al. US-guided percutaneous microwave ablation versus open radical nephrectomy for small renal cell carcinoma: intermediate-term results. Radiology. 2014;270(3):880–7.

    Article  PubMed  Google Scholar 

  36. Martin J, Athreya S. Meta-analysis of cryoablation versus microwave ablation for small renal masses: is there a difference in outcome? Diagn Interv Radiol. 2013;19:501–7.

    PubMed  Google Scholar 

  37. Goetz MP, Callstrom MR, Charboneau JW, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol. 2004;22(3):300–6.

    Article  PubMed  Google Scholar 

  38. Wang C, Wang H, Yang W, Hu K, Xie H, Hu KQ, et al. Multicenter randomized controlled trial of percutaneous cryoablation versus radiofrequency ablation in hepatocellular carcinoma. Hepatology. 2015;61(5):1579–90.

    Article  PubMed  Google Scholar 

  39. Yamauchi Y, Izumi Y, Kawamura M, et al. Percutaneous cryoablation of pulmonary metastases from colorectal cancer. PLoS One. 2011;6(11):e27086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Izadifar Z, Izadifar Z, Chapman D, Babyn P. An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications. J Clin Med. 2020;9(2):460.

    Article  PubMed Central  Google Scholar 

  41. Napoli A, Alfieri G, Scipione R, Leonardi A, Fierro D, Panebianco V, et al. High-intensity focused ultrasound for prostate cancer. Expert Rev Med Devices. 2020;17(3):427–33.

    Article  CAS  PubMed  Google Scholar 

  42. Masciocchi C, Arrigoni F, Ferrari F, Giordano AV, Iafrate S, Capretti I, et al. Uterine fibroid therapy using interventional radiology mini-invasive treatments: current perspective. Med Oncol. 2017;34(4):52.

    Article  PubMed  Google Scholar 

  43. Quinn SD, Vedelago J, Gedroyc W, Regan L. Safety and five-year re-intervention following magnetic resonance-guided focused ultrasound (MRgFUS) for uterine fibroids. Eur J Obstet Gynecol Reprod Biol. 2014;182:247–51.

    Article  CAS  PubMed  Google Scholar 

  44. Guillaumier S, Peters M, Arya M, Afzal N, Charman S, Dudderidge T, et al. A multicentre study of 5-year outcomes following focal therapy in treating clinically significant nonmetastatic prostate cancer. Eur Urol. 2018;74(4):422–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang L, Zhu H, Jin C, Zhou K, Li K, Su H, et al. High-intensity focused ultrasound (HIFU): effective and safe therapy for hepatocellular carcinoma adjacent to major hepatic veins. Eur Radiol. 2008;19:437–45.

    Article  PubMed  Google Scholar 

  46. Yang T, Ng DM, Du N, He N, Dai X, Chen P, et al. HIFU for the treatment of difficult colorectal cancer with unsuitable indications for resection and radiofrequency ablation: a phase I clinical trial. Surg Endosc. 2021;35:2306–15.

    Article  PubMed  Google Scholar 

  47. Peek MCL, Ahmed M, Napoli A, ten Haken B, McWilliams S, Usiskin SI, et al. Systematic review of high-intensity focused ultrasound ablation in the treatment of breast cancer. Br J Surg. 2015;102(8):873–82.

    Article  CAS  PubMed  Google Scholar 

  48. Feril LB, Fernan RL, Tachibana K. High-intensity focused ultrasound in the treatment of breast cancer. Curr Med Chem. 2021;28(25):5179–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Hwang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagchee-Clark, A., Hwang, A., Milovanovic, L. (2022). Image-Guided Tumor Ablative Therapies. In: Athreya, S., Albahhar, M. (eds) Demystifying Interventional Radiology. Springer, Cham. https://doi.org/10.1007/978-3-031-12023-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12023-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12022-0

  • Online ISBN: 978-3-031-12023-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics