Skip to main content

Tumor Ablation: An Evolving Technology

  • Reference work entry
  • First Online:
Image-Guided Cancer Therapy

Abstract

Image-guided tumor ablation is a minimally invasive strategy to treat focal tumors by inducing irreversible cellular injury through the application of thermal, and more recently, nonthermal energy or chemical injection. This approach has become a widely accepted technique and is incorporated into the treatment of a range of clinical circumstances, including in the treatment of focal tumors in the liver, lung, kidney, bone, and adrenal glands. Given the multiplicity of treatment types and potential complexity of paradigms in oncology, and the wider application of thermal ablation techniques, a thorough understanding of the basic principles and recent advances in thermal ablation is a necessary prerequisite for their effective clinical use. This chapter will review several of these key concepts related to tumor ablation, including those that relate to performing a clinical ablation, such as understanding the goals of therapy and mechanisms of tissue heating or tumor destruction, and understanding the proper role of tumor ablation and the strategies that are being pursued to improve overall ablation outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gervais DA, et al. Renal cell carcinoma: clinical experience and technical success with radio-frequency ablation of 42 tumors. Radiology. 2003;226(2):417–24.

    Article  PubMed  Google Scholar 

  2. Kurup AN, Callstrom MR. Ablation of skeletal metastases: current status. J Vasc Interv Radiol. 2010;21(8 suppl):S242–50.

    Article  PubMed  Google Scholar 

  3. Livraghi T, et al. Hepatocellular carcinoma: radiofrequency ablation of medium and large lesions. Radiology. 2000;214:761–8.

    Article  CAS  PubMed  Google Scholar 

  4. Solbiati L, et al. Percutaneous radiofrequency ablation of hepatic metastases from colorectal cancer: long term results in 117 patients. Radiology. 2001;221:159–66.

    Article  CAS  PubMed  Google Scholar 

  5. Venkatesan AM, et al. Percutaneous ablation of adrenal tumors. Tech Vasc Interv Radiol. 2010;13(2):89–99.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stage I non-small cell lung cancer. J Am Coll Surg. 2010;211(1):68–72.

    Article  PubMed  Google Scholar 

  7. Ahmed M, et al. Principles of and advances in percutaneous ablation. Radiology. 2010;258(2):351–69.

    Article  Google Scholar 

  8. Dodd 3rd GD, et al. Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough. Radiographics. 2000;20(1):9–27.

    Article  PubMed  Google Scholar 

  9. Shimada K, et al. Role of the width of the surgical margin in a hepatectomy for small hepatocellular carcinomas eligible for percutaneous local ablative therapy. Am J Surg. 2008;195(6):775–81.

    Article  PubMed  Google Scholar 

  10. Gervais DA, et al. Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol. 2005;185(1):64–71.

    Article  PubMed  Google Scholar 

  11. Lencioni R, et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology. 2005;234(3):961–7.

    Article  PubMed  Google Scholar 

  12. Lencioni R, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9(7):621–8.

    Article  PubMed  Google Scholar 

  13. Goldberg SN, et al. Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. AJR Am J Roentgenol. 2002;179(1):93–101.

    Article  PubMed  Google Scholar 

  14. Callstrom MR, Charboneau JW. Image-guided palliation of painful metastases using percutaneous ablation. Tech Vasc Interv Radiol. 2007;10(2):120–31.

    Article  PubMed  Google Scholar 

  15. Gillams A, et al. Radiofrequency ablation of neuroendocrine liver metastases: the Middlesex experience. Abdom Imaging. 2005;30(4):435–41.

    Article  CAS  PubMed  Google Scholar 

  16. Dodd 3rd GD, et al. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol. 2001;177(4):777–82.

    Article  PubMed  Google Scholar 

  17. Goldberg SN, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol. 2009;20(7 suppl):S377–90.

    Article  PubMed  Google Scholar 

  18. Schramm W, Yang D, Haemmerich D. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Conf Proc IEEE Eng Med Biol Soc. 2006;1:5013–6.

    CAS  PubMed  Google Scholar 

  19. Ahmed M, et al. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation. Int J Hyperthermia. 2008;24(7):577–88.

    Article  PubMed  Google Scholar 

  20. Thrall DE, et al. A comparison of temperatures in canine solid tumours during local and whole-body hyperthermia administered alone and simultaneously. Int J Hyperthermia. 1990;6(2):305–17.

    Article  CAS  PubMed  Google Scholar 

  21. Seegenschmiedt M, Brady L, Sauer R. Interstitial thermoradiotherapy: review on technical and clinical aspects. Am J Clin Oncol. 1990;13:352–63.

    Article  CAS  PubMed  Google Scholar 

  22. Trembley B, Ryan T, Strohbehn J. Interstitial hyperthermia: physics, biology, and clinical aspects. Hyperth Oncol. 1992;3:11–98. Utrecht: VSP.

    Google Scholar 

  23. Larson T, Bostwick D, Corcia A. Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissues in patients with benign prostatic hyperplasia. Urology. 1996;47:463–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zevas N, Kuwayama A. Pathologic analysis of experimental thermal lesions: comparison of induction heating and radiofrequency electrocoagulation. J Neurosurg. 1972;37:418–22.

    Article  Google Scholar 

  25. Goldberg SN, et al. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer. 2000;88:2452–63.

    Article  CAS  PubMed  Google Scholar 

  26. Goldberg SN, et al. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol. 1996;3:212–8.

    Article  CAS  PubMed  Google Scholar 

  27. Mertyna P, et al. Radiofrequency ablation: the effect of distance and baseline temperature on thermal dose required for coagulation. Int J Hyperthermia. 2008;24(7):550–9.

    Article  PubMed  Google Scholar 

  28. Mertyna P, et al. Radiofrequency ablation: variability in heat sensitivity in tumors and tissues. J Vasc Interv Radiol. 2007;18(5):647–54.

    Article  PubMed  Google Scholar 

  29. Daniels C, Rubinsky B. Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues. J Biomech Eng. 2009;131(7):071006.

    Article  PubMed  Google Scholar 

  30. Pennes H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1:93–122.

    CAS  PubMed  Google Scholar 

  31. Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, technqiues, and diagnostic imaging guidance. Am J Radiol. 2000;174:323–31.

    CAS  Google Scholar 

  32. Goldberg SN, et al. Percutaneous radiofrequency tissue ablation: optimization of pulsed-RF technique to increase coagulation necrosis. JVIR. 1999;10:907–16.

    Article  CAS  PubMed  Google Scholar 

  33. Goldberg SN, et al. Large-volume tissue ablation with radiofrequency by using a clustered, internally-cooled electrode technique: laboratory and clinical experience in liver metastases. Radiology. 1998;209:371–9.

    Article  CAS  PubMed  Google Scholar 

  34. Gulesserian T, et al. Comparison of expandable electrodes in percutaneous radiofrequency ablation of renal cell carcinoma. Eur J Radiol. 2006;59(2):133–9.

    Article  PubMed  Google Scholar 

  35. McGahan JP, et al. Maximizing parameters for tissue ablation by using an internally cooled electrode. Radiology. 2010;256(2):397–405.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brace CL, et al. Radiofrequency ablation: simultaneous application of multiple electrodes via switching creates larger, more confluent ablations than sequential application in a large animal model. J Vasc Interv Radiol. 2009;20(1):118–24.

    Article  PubMed  Google Scholar 

  37. Laeseke PF, et al. Multiple-electrode radiofrequency ablation creates confluent areas of necrosis: in vivo porcine liver results. Radiology. 2006;241(1):116–24.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brace CL, et al. Radiofrequency ablation with a high-power generator: device efficacy in an in vivo porcine liver model. Int J Hyperthermia. 2007;23(4):387–94.

    Article  CAS  PubMed  Google Scholar 

  39. Solazzo SA, et al. High-power generator for radiofrequency ablation: larger electrodes and pulsing algorithms in bovine ex vivo and porcine in vivo settings. Radiology. 2007;242(3):743–50.

    Article  PubMed  Google Scholar 

  40. Laeseke PF, et al. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol. 2009;20(9):1224–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Goldberg SN, et al. Radiofrequency tissue ablation using multiprobe arrays: greater tissue destruction than multiple probes operating alone. Acad Radiol. 1995;2:670–4.

    Article  CAS  PubMed  Google Scholar 

  42. Bangard C, et al. Large-volume multi-tined expandable RF ablation in pig livers: comparison of 2D and volumetric measurements of the ablation zone. Eur Radiol. 2010;20(5):1073–8.

    Article  PubMed  Google Scholar 

  43. Rossi S, Buscarini E, Garbagnati F. Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. AJR Am J Roentgenol. 1998;170:1015–22.

    Article  CAS  PubMed  Google Scholar 

  44. Siperstein AE, et al. Laparoscopic thermal ablation of hepatic neuroendocrine tumor metastases. Surgery. 1997;122:1147–55.

    Article  CAS  PubMed  Google Scholar 

  45. Leveen RF. Laser hyperthermia and radiofrequency ablation of hepatic lesions. Semin Interv Radiol. 1997;12:313–24.

    Google Scholar 

  46. Appelbaum L, et al. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver. Radiology. 2010;254(2):430–40.

    Article  PubMed  Google Scholar 

  47. McGahan JP, et al. Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol. 1996;3(5):418–22.

    Article  CAS  PubMed  Google Scholar 

  48. Desinger K, et al. Interstitial bipolar RF-thermotherapy (REITT) therapy by planning by computer simulation and MRI-monitoring – a new concept for minimally invasive procedures. Proc SPIE. 1999;3249:147–60.

    Article  Google Scholar 

  49. Lee JM, et al. Bipolar radiofrequency ablation using wet-cooled electrodes: an in vitro experimental study in bovine liver. AJR Am J Roentgenol. 2005;184(2):391–7.

    Article  PubMed  Google Scholar 

  50. Seror O, et al. Large (>or = 5.0-cm) HCCs: multipolar RF ablation with three internally cooled bipolar electrodes – initial experience in 26 patients. Radiology. 2008;248(1):288–96.

    Article  PubMed  Google Scholar 

  51. Lee JM, et al. Multiple-electrode radiofrequency ablation of in vivo porcine liver: comparative studies of consecutive monopolar, switching monopolar versus multipolar modes. Invest Radiol. 2007;42(10):676–83.

    Article  PubMed  Google Scholar 

  52. Goldberg SN, et al. Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol. 1996;3:636–44.

    Article  CAS  PubMed  Google Scholar 

  53. Hsieh CL, et al. Effectiveness of ultrasound-guided aspiration and sclerotherapy with 95 % ethanol for treatment of recurrent ovarian endometriomas. Fertil Steril. 2009;91(6):2709–13.

    Article  PubMed  Google Scholar 

  54. Hines-Peralta A, et al. Hybrid radiofrequency and cryoablation device: preliminary results in an animal model. J Vasc Interv Radiol. 2004;15(10):1111–20.

    Article  PubMed  Google Scholar 

  55. Tsai WL, et al. Clinical trial: percutaneous acetic acid injection versus percutaneous ethanol injection for small hepatocellular carcinoma - a long-term follow-up study. Aliment Pharmacol Ther 2008; 28(3):304–11.

    Article  CAS  PubMed  Google Scholar 

  56. He N, et al. Microwave ablation: an experimental comparative study on internally cooled antenna versus non-internally cooled antenna in liver models. Acad Radiol. 2010;17(7):894–9.

    Article  PubMed  Google Scholar 

  57. Lu DS, et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol. 2003;14(10):1267–74.

    Article  PubMed  Google Scholar 

  58. Patterson EJ, et al. Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Ann Surg. 1998;227(4):559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mostafa EM, et al. Optimal strategies for combining transcatheter arterial chemoembolization and radiofrequency ablation in rabbit VX2 hepatic tumors. J Vasc Interv Radiol. 2008;19(12):1740–8.

    Article  PubMed  Google Scholar 

  60. Goldberg SN, et al. Radio-frequency tissue ablation: effect of pharmacologic modulation of blood flow on coagulation diameter. Radiology. 1998;209(3):761–7.

    Article  CAS  PubMed  Google Scholar 

  61. Horkan C, et al. Radiofrequency ablation: effect of pharmacologic modulation of hepatic and renal blood flow on coagulation diameter in a VX2 tumor model. J Vasc Interv Radiol. 2004;15(3):269–74.

    Article  PubMed  Google Scholar 

  62. Hakime A, et al. Combination of radiofrequency ablation with antiangiogenic therapy for tumor ablation efficacy: study in mice. Radiology. 2007;244(2):464–70.

    Article  PubMed  Google Scholar 

  63. Lee EW, et al. Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology. 2010;255(2):426–33.

    Article  PubMed  Google Scholar 

  64. Liu YJ, et al. Thermal characteristics of microwave ablation in the vicinity of an arterial bifurcation. Int J Hyperthermia. 2006;22(6):491–506.

    Article  CAS  PubMed  Google Scholar 

  65. Aube C, et al. Influence of NaCl concentrations on coagulation, temperature, and electrical conductivity using a perfusion radiofrequency ablation system: an ex vivo experimental study. Cardiovasc Intervent Radiol. 2007;30(1):92–7.

    Article  PubMed  Google Scholar 

  66. Gillams AR, Lees WR. CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Intervent Radiol. 2005;28(4):476–80.

    Article  CAS  PubMed  Google Scholar 

  67. Liu Z, et al. Radiofrequency tumor ablation: insight into improved efficacy using computer modeling. AJR Am J Roentgenol. 2005;184(4):1347–52.

    Article  PubMed  Google Scholar 

  68. Laeseke PF, et al. Use of dextrose 5 % in water instead of saline to protect against inadvertent radiofrequency injuries. AJR Am J Roentgenol. 2005;184(3):1026–7.

    Article  PubMed  Google Scholar 

  69. Yang D, et al. Measurement and analysis of tissue temperature during microwave liver ablation. IEEE Trans Biomed Eng. 2007;54(1):150–5.

    Article  PubMed  Google Scholar 

  70. Yang D, et al. Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans Biomed Eng. 2007;54(8):1382–8.

    Article  PubMed  Google Scholar 

  71. Brace CL, et al. Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung. J Vasc Interv Radiol. 2010;21(8):1280–6.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Isfort P, et al. [In vitro experiments on fluid-modulated microwave ablation]. Rofo. 2010;182(6):518–24.

    Article  CAS  PubMed  Google Scholar 

  73. Ahmed M, et al. Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology. 2005;235(2):469–77.

    Article  PubMed  Google Scholar 

  74. Horkan C, et al. Reduced tumor growth with combined radiofrequency ablation and radiation therapy in a rat breast tumor model. Radiology. 2005;235(1):81–8.

    Article  PubMed  Google Scholar 

  75. Ahmed M, Goldberg SN. Combination radiofrequency thermal ablation and adjuvant IV liposomal doxorubicin increases tissue coagulation and intratumoural drug accumulation. Int J Hyperthermia. 2004;20(7):781–802.

    Article  CAS  PubMed  Google Scholar 

  76. Dupuy DE, et al. Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer. Chest. 2006;129(3):738–45.

    Article  PubMed  Google Scholar 

  77. Goldberg SN, et al. Radiofrequency thermal ablation with adjuvant saline injection: effect of electrical conductivity on tissue heating and coagulation. Radiology. 2001;219:157–65.

    Article  CAS  PubMed  Google Scholar 

  78. Gaber MH, et al. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys. 1996;36(5):1177–87.

    Article  CAS  PubMed  Google Scholar 

  79. Negussie AH, et al. Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperthermia. 2011;27(2):140–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gasselhuber A, et al. Mathematical spatio-temporal model of drug delivery from low temperature sensitive liposomes during radiofrequency tumour ablation. Int J Hyperthermia. 2010;26(5):499–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ahmed M, et al. Radiofrequency thermal ablation sharply increases intratumoral liposomal doxorubicin accumulation and tumor coagulation. Cancer Res. 2003;63(19):6327–33.

    CAS  PubMed  Google Scholar 

  82. D’Ippolito G, et al. Percutaneous tumor ablation: reduced tumor growth with combined radio-frequency ablation and liposomal doxorubicin in a rat breast tumor model. Radiology. 2003;228(1):112–8.

    Article  PubMed  Google Scholar 

  83. Monsky WL, et al. Radio-frequency ablation increases intratumoral liposomal doxorubicin accumulation in a rat breast tumor model. Radiology. 2002;224(3):823–9.

    Article  CAS  PubMed  Google Scholar 

  84. Poon RT, Borys N. Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother. 2009;10(2):333–43.

    Article  CAS  PubMed  Google Scholar 

  85. Solazzo S, et al. Liposomal doxorubicin increases radiofrequency ablation-induced tumor destruction by increasing cellular oxidative and nitrative stress and accelerating apoptotic pathways. Radiology. 2010;255:62–74.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang W, et al. Do liposomal apoptotic enhancers increase tumor coagulation and end-point survival in percutaneous radiofrequency ablation of tumors in a rat tumor model? Radiology. 2010;257(3):685–96.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ahrar K, et al. Dr. Gary J. Becker Young Investigator Award: relative thermosensitivity of cytotoxic drugs used in transcatheter arterial chemoembolization. J Vasc Interv Radiol. 2004;15(9):901–5.

    Article  PubMed  Google Scholar 

  88. Kim JH, et al. Medium-sized (3.1–5.0 cm) hepatocellular carcinoma: transarterial chemoembolization plus radiofrequency ablation versus radiofrequency ablation alone. Ann Surg Oncol. 2011;18:1624–9.

    Article  PubMed  Google Scholar 

  89. Morimoto M, et al. Midterm outcomes in patients with intermediate-sized hepatocellular carcinoma: a randomized controlled trial for determining the efficacy of radiofrequency ablation combined with transcatheter arterial chemoembolization. Cancer. 2010;116(23):5452–60.

    Article  PubMed  Google Scholar 

  90. Chan MD, et al. Combined radiofrequency ablation and high-dose rate brachytherapy for early-stage non-small-cell lung cancer. Brachytherapy. 2011;10:253–9.

    Article  PubMed  Google Scholar 

  91. Grieco CA, et al. Percutaneous image-guided thermal ablation and radiation therapy: outcomes of combined treatment for 41 patients with inoperable stage I/II non-small-cell lung cancer. J Vasc Interv Radiol. 2006;17(7):1117–24.

    Article  PubMed  Google Scholar 

  92. Algan O, et al. External beam radiotherapy and hyperthermia in the treatment of patients with locally advanced prostate carcinoma. Cancer. 2000;89(2):399–403.

    Article  CAS  PubMed  Google Scholar 

  93. Solazzo S, et al. RF ablation with adjuvant therapy: comparison of external beam radiation and liposomal doxorubicin on ablation efficacy in an animal tumor model. Int J Hyperthermia. 2008;24(7):560–7.

    Article  CAS  PubMed  Google Scholar 

  94. Mayer R, et al. Hyperbaric oxygen and radiotherapy. Strahlenther Onkol. 2005;181(2):113–23.

    Article  PubMed  Google Scholar 

  95. Wood BJ, et al. Navigation systems for ablation. J Vasc Interv Radiol. 2010;21(8 suppl):S257–63.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Krucker J, et al. Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol. 2007;18(9):1141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Klauser AS, et al. Fusion of real-time US with CT images to guide sacroiliac joint injection in vitro and in vivo. Radiology. 2010;256(2):547–53.

    Article  PubMed  Google Scholar 

  98. Khan MF, et al. Navigation-based needle puncture of a cadaver using a hybrid tracking navigational system. Invest Radiol. 2006;41(10):713–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneeb Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Ahmed, M., Tasawwar, B., Goldberg, S.N. (2013). Tumor Ablation: An Evolving Technology. In: Dupuy, D., Fong, Y., McMullen, W. (eds) Image-Guided Cancer Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0751-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0751-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0750-9

  • Online ISBN: 978-1-4419-0751-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics