Skip to main content

Experimental Study on the Correlation Between Dynamic Properties and Microstructure of Lacustrine Soft Clay

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022) (PBD-IV 2022)

Part of the book series: Geotechnical, Geological and Earthquake Engineering ((GGEE,volume 52))

  • 136 Accesses

Abstract

Due to the influential mesostructure of lacustrine soft clay on the dynamic characteristic parameters, the dynamic shear modulus and damping ratio of the lacustrine soft clay are obtained by selecting different consolidation confining pressures for indoor resonance column test and scanning electron microscope (SEM) test, and the microstructure parameters of the lacustrine soft clay are acquired by analyzing the SEM image through the IPP (Image-Pro Plus) image processing software as well. By analyzing the relationship between some dynamic characteristic parameters and microstructure parameters is analyzed to explain the dynamic shear modulus and damping ratio from the perspective of soil microstructure characteristics. It is shown that the mean maximum dynamic shear modulus has a strong correlation with the maximum radius of the particles and the shape of the soil pores (abundance, circularity, fractal dimension), indicating that the size of the soil particles and the shape of the pores have a strong influence on dynamic shear modulus of soil; the correlation between the maximum damping ratio and the microstructure characteristics is weak, and the influence law is more complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, J.I., Golesorkhi, R., Seed, H.B.: Dynamic Moduli and Damping Ratios for Cohesive Soils (1988)

    Google Scholar 

  2. Kagawa, T.: Moduli and damping factors of soft marine clays. J. Geotech. Eng. 118(9), 1360–1375 (1992). https://doi.org/10.1061/(ASCE)0733-9410(1992)118:9(1360)

    Article  Google Scholar 

  3. Teachavorasinskun, S., Thongchim, P., Lukkunaprasit, P.: Shear modulus and damping of soft Bangkok Clays. Can. Geotech. J. 39(5), 1201–1208 (2002). https://doi.org/10.1139/t02-048

    Article  Google Scholar 

  4. Lanzo, G., Pagliaroli, A., Tommasi, P., et al.: Simple shear testing of sensitive, very soft offshore clay for wide strain range. Can. Geotech. J. 46(11), 1277–1288 (2009). https://doi.org/10.1139/T09-059#.Ud8JDcxH5Ag

    Article  Google Scholar 

  5. Sas, W., Gabryś, K., Szymański, A.: Effect of time on dynamic shear modulus of selected cohesive soil of one section of express way no. S2 in Warsaw. Acta Geophys. 63(2), 398–413 (2015). https://doi.org/10.2478/s11600-014-0256-z

    Article  Google Scholar 

  6. Jallu, M., Saride, S., Dutta, T.T.: Effect of saturation on dynamic properties of compacted clay in a resonant column test. Geomech. Geoeng. Int. J. 12(3), 1 (2017). https://doi.org/10.1080/17486025.2016.1208849

    Article  Google Scholar 

  7. Lin, P., Ni, J., Garg, A., et al.: Effects of clay minerals on small-strain shear modulus and damping ratio of saturated clay. Soil Mech. Found. Eng. 57(1), (2019). https://doi.org/10.1007/s11204-020-09644-5

  8. Moore, C.A., Donaldson, C.F.: Quantifying soil microstructure using fractals. Géotechnique 45(1), 105–116 (1995). https://doi.org/10.1016/0148-9062(95)99096-G

    Article  Google Scholar 

  9. Liu, C., Shi, B., Zhou, J., et al.: Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: application on SEM images of clay materials. Appl. Clay Sci. 54(1), 97–106 (2011). https://doi.org/10.1016/j.clay.2011.07.022

    Article  Google Scholar 

  10. Ndèye, F.N., Monga, O., Mohamed, M.M.O., et al.: 3D Shape extraction segmentation and representation of soil microstructures using generalized cylinders. Comput. Geosci. 39(2), 50–63 (2012). https://doi.org/10.1016/j.cageo.2011.06.010

    Article  Google Scholar 

  11. Osipov, V.I., Nikolaeva, S.K., Sokolov, V.N.: Microstructural changes associated with thixotropic phenomena in clay soils. Géotechnique 34(3), 293–303 (1984). https://doi.org/10.1680/geot.1984.34.3.293

    Article  Google Scholar 

  12. Pusch, R., Weston, R.: Microstructural Stability controls the hydraulic conductivity of smectitic buffer clay. Appl. Clay Sci. 23(1), 35–41 (2003). https://doi.org/10.1016/S0169-1317(03)00084-X

    Article  Google Scholar 

  13. Sivakumar, V., Doran, I.G., Graham, J.: Particle orientation and its influence on the mechanical behaviour of isotropically consolidated reconstituted clay. Eng. Geol. 66(3), 197–209 (2002). https://doi.org/10.1016/S0013-7952(02)00040-6

    Article  Google Scholar 

  14. Cetin, H., Goekoglu, A.: Soil structure changes during drained and undrained Triaxial shear of a clayey soil. Soils Found. 53(5), 628–638 (2013). https://doi.org/10.1016/j.sandf.2013.08.002

    Article  Google Scholar 

  15. Jiang, M., Zhang, F., Hu, H., et al.: Structural characterization of natural loess and remolded loess under Triaxial Tests. Eng. Geol. 181, 249–260 (2014). https://doi.org/10.1016/j.enggeo.2014.07.021

    Article  Google Scholar 

  16. Philippe, P., Martin, H., et al.: One-dimensional dynamic ground response analyses. J. Geotech. Geoenviron. Eng. 108(7), 935–952 (1982). https://doi.org/10.1016/0022-1694(82)90165-2

    Article  Google Scholar 

  17. Dathe, A., Eins, S., Niemeyer, J., et al.: The surface fractal dimension of the soil–pore interface as measured by image analysis. Geoderma 103(1), 203–229 (2001). https://doi.org/10.1016/S0016-7061(01)00077-5

    Article  Google Scholar 

  18. Obara, B., Kozusnikova, A.: Utilisation of the image analysis method for the detection of the morphological anisotropy of calcite grains in marble. Comput. Geosci. 11(4), 275–281 (2007). https://doi.org/10.1007/s10596-007-9051-0

    Article  Google Scholar 

  19. Prakongkep, N., Suddhiprakarn, A., Kheoruenromne, I., et al.: SEM image analysis for characterization of sand grains in Thai Paddy soils. Geoderma 156(1), 20–31 (2010). https://doi.org/10.1016/j.geoderma.2010.01.003

    Article  Google Scholar 

  20. Cox, M.R., Budhu, M.: A practical approach to grain shape quantification. Eng. Geol. 96(1), 1–16 (2008). https://doi.org/10.1016/j.enggeo.2007.05.005

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant no. 51778207) and the Henan Key Laboratory of Special Protective Materials (Grant no. SZKFJJ202005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yurun Li or Jingjuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Yang, Z., Zhang, J., Zhao, Y., Du, C. (2022). Experimental Study on the Correlation Between Dynamic Properties and Microstructure of Lacustrine Soft Clay. In: Wang, L., Zhang, JM., Wang, R. (eds) Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022). PBD-IV 2022. Geotechnical, Geological and Earthquake Engineering, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-031-11898-2_187

Download citation

Publish with us

Policies and ethics