Skip to main content
Log in

Utilisation of the image analysis method for the detection of the morphological anisotropy of calcite grains in marble

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper presents the development and utilisation of an automated image processing algorithm for detection and analysis of grains. Using optical polarising microscopy, a set of colored images are collected from an area on a thin section. A filtering operation, using rotation of a morphological alternating sequence filter (based on a structuring element), is used to remove twinning features within individual grains. Filtering is followed by the watershed segmentation technique to determine grain boundaries. The method is used for the identification of calcite grains in marble and the subsequent analysis of morphological anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colak, K., Unlu, T.: Effect of transverse anisotropy on the Hoek–Brown strength parameter ‘m i’ for intact rocks. Int. J. Rock Mech. Min. Sci. 41, 1045–1052 (2004)

    Article  Google Scholar 

  2. Kwaśniewski, M.A.: Mechanical behaviour of anisotropic rocks. In: Hudson, J.A. (ed.) Comprehensive Rock Engineering, Principles, Practice & Projects, vol.1, pp. 285–312. Pergamon Press, Oxford New York Seoul Tokyo (1993)

    Google Scholar 

  3. Martinec, P., Keclík, L.: K metodice zjišt’ování vztahu strukturní a mechanické anizotropie hornin. Geol. Průzk. XVII(9), 256–269 (1975)

    Google Scholar 

  4. Ochocińska, T.: Anizotropia wytrzymalosci na jednoosowe sciskanie i rozrywanie cechsztynskich anhydrytow z rejonu Polkowice. Arch. Min. Sci. 25(2), 233–247 (1980)

    Google Scholar 

  5. Přikryl, R.: Some microstructural aspects of strength variation in rocks. Int. J. Rock Mech. Min. Sci 38, 671–682 (2001)

    Article  Google Scholar 

  6. Ramamurthy, T.: Strength and modulus responses of anisotropic rocks. In: Hudson, J.A. (ed.) Comprehensive Rock Engineering, Principles, Practice & Projects, vol.1, pp. 313–329. Pergamon Press, Oxford New York Seoul Tokyo (1993)

    Google Scholar 

  7. Štelcl, J., Beneš, K., Pták, J.: Základy drobné tektoniky a petrotektoniky. Masarykova Univerzita, Brno (1980)

  8. Přikryl, R., Lokajíček, T., Li C., Rudajev, V.: Acoustic emission characteristics and failure of uniaxially stressed granitic rocks: the effect of rock fabric. Rock Mech. Rock Eng. 36(4), 255–270 (2003)

    Article  Google Scholar 

  9. Franklin, J.A., Dusseault, M.B.: Rock engineering. McGraw-Hill Publishing Company, New York (1989)

    Google Scholar 

  10. Hejtman, B.: Petrografie metamorfovaných hornin. Nakladatelství ČSAV, Praha (1962)

    Google Scholar 

  11. Slavík, F., Novák, J., Kokta, J.: Mineralogie. Academia, Praha (1974)

    Google Scholar 

  12. Lepper, H. A. Jr.: Compression tests on oriented specimens of Yule marble. Am. J. Sci. 247, 570–575 (1949)

    Article  Google Scholar 

  13. Griggs, D., Miller, W.B.: Deformation of Yule marble: Part 1. Geol. Soc. AmEr. Bull. 62, 853–862 (1951)

    Article  Google Scholar 

  14. Turner, F. J., Griggs, D.T., Heard, H.C.: Experimental deformation of calcite crystals. Geol. Soc. Amer. Bull. 65, 883–934 (1954)

    Article  Google Scholar 

  15. Handin, J, Higgs, D, O’Brien, J.K.: Torsion of Yule marble under confining pressure. Geological Society of America Memorials 79, 245–274 (1960)

    Google Scholar 

  16. Royer-Carfagni, G.F.: On the thermal degradation of marble. Rock Mech. Min. Sci 36, 119–126 (1998)

    Article  Google Scholar 

  17. Heilbronner, R.: Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images. J. Struct. Geol. 22, 969–981 (2000)

    Article  Google Scholar 

  18. Obara, B.: Identification of transcrystalline microcracks observed in microscope images of dolomite structure using image analysis methods based on linear structuring element processing. Comput. Geosci. 33(2), 151–158 (2007)

    Article  Google Scholar 

  19. Młynarczuk, M.: Some remarks on the application of image analysis and image processing for the description of the geometrical structures of rock. Fizykochem. Probl. Mineral. 33, 107–116 (1999)

    Google Scholar 

  20. Luumbreras, F., Serrat, J.: Segmentation of petrographical images of marbles. Comput. Geosci. 22, 547–558 (1996)

    Article  Google Scholar 

  21. Zhou, Y., Starkey, J., Mansinha, L.: Segmentation of petrographic images by integrating edge detection and region growing. Comput. Geosci. 30, 817–831 (2004)

    Article  Google Scholar 

  22. Marinonia, N., Pavesea, A., Foia, M., Trombinoa, L.: Characterisation of mortar morphology in thin sections by digital image processing. Cem. Concr. Res. 35, 1613–1619 (2005)

    Article  Google Scholar 

  23. Ross, B.J., Fueten, F., Yashkir, D.Y.: Automatic mineral identification using genetic programming. Mach. Vis. Appl. 13, 61–69 (2001)

    Article  Google Scholar 

  24. Plevová, E., Šugárková, V.: Vliv anizotropie a minerálního složení hornin na dilataci hornin. Chemické Listy (2006, in press)

  25. Starkey, J., Samantaray, A.K.: Edge detection in petrographic images. J. Microsc. 172, 263–266 (1993)

    Google Scholar 

  26. Goodchild, J.S., Fueten, F.: Edge detection in petrographic images using the rotating polarizer stage. Comput. Geosci. 24(8), 745–751 (1998)

    Article  Google Scholar 

  27. Obara, B.: Application of the image analysis method to the detection of transcrystalline microcracks observed in microscope images of dolomite and granite structures. Arch. Min. Sci. 50(4), 537–551 (2005)

    Google Scholar 

  28. Obara, B.: Application of the image analysis method to the detection of transcrystalline microcracks observed in microscope images of rock structures. Geophys. Res. Abstr. 8, 16 (2006)

    Google Scholar 

  29. Serra, J.: Image analysis and mathematical Morphology. Academic Press, New York (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boguslaw Obara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obara, B., Kožušníková, A. Utilisation of the image analysis method for the detection of the morphological anisotropy of calcite grains in marble. Comput Geosci 11, 275–281 (2007). https://doi.org/10.1007/s10596-007-9051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-007-9051-0

Keywords

Navigation