Skip to main content

Nuclear Receptors and Lipid Sensing

  • Chapter
  • First Online:
Nuclear Receptors in Human Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1390))

Abstract

Fluctuations in concentration of diverse lipid classes occur in response to diet and metabolism. These changes are managed and mediated by a cell network of enzymes, pumps, and carriers under the control of the lipid responsive nuclear receptors. The understanding of how dysregulation of lipid metabolism are causes and indicators of disease beyond the cardiovascular system has developed in the last decade. A particular emphasis on the role of lipids and lipid-sensing nuclear receptors has emerged in the fields of cancer and the immune system’s interaction with cancer. The range of known lipid-based ligands has also expanded. Lipids are not just signalling molecules, but also play structural roles in cells and tissues, for example as major constituents of the lipid bilayer – positioning them as integrators and mediators of signaling. This chapter will discuss the major groups of lipid-sensing nuclear receptors focusing on the liver x receptors, farnesoid x receptor, and the peroxisome proliferator-activated receptors. Initially the reader is presented with information on how these receptors behave and function at the molecular biology level, the range of selective modulation of function by endogenous ligands, and examples of how activity is fine-tuned by mechanisms such as miRNA regulation and post-translational modification of the proteins. We then explore the advances in understanding that have positioned these receptors as therapeutic targets in cancer and immuno-oncology. Finally, the chapter explains the gaps in understanding and experimental challenges that should be prioritized in the coming decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedin SA, Thorne JL, Battaglia S, Maguire O, Hornung LB, Doherty AP, Mills IG, Campbell MJ (2009) Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells. Carcinogenesis 30:449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Absil L, Journé F, Larsimont D, Body J-J, Tafforeau L, Nonclercq D (2020) Farnesoid X receptor as marker of osteotropism of breast cancers through its role in the osteomimetism of tumor cells. BMC Cancer 20:1–15

    Article  CAS  Google Scholar 

  3. Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272:5128–5132

    Article  CAS  PubMed  Google Scholar 

  4. Alasmael N, Mohan R, Meira LB, Swales KE, Plant NJ (2016) Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential. Cancer Lett 370:250–259

    Article  CAS  PubMed  Google Scholar 

  5. Andrzejewski S, Klimcakova E, Johnson RM, Tabaries S, Annis MG, McGuirk S, Northey JJ, Chenard V, Sriram U, Papadopoli DJ et al (2017) PGC-1alpha promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metab 26:778–787 e775

    Article  CAS  PubMed  Google Scholar 

  6. Annalora AJ, Marcus CB, Iversen PL (2020) Alternative splicing in the nuclear receptor superfamily expands gene function to refine Endo-xenobiotic metabolism. Drug Metab Dispos 48:272–287

    Article  CAS  PubMed  Google Scholar 

  7. Axelson M, Larsson O (1995) Low density lipoprotein (LDL) cholesterol is converted to 27-hydroxycholesterol in human fibroblasts. Evidence that 27-hydroxycholesterol can be an important intracellular mediator between LDL and the suppression of cholesterol production. J Biol Chem 270:15102–15110

    Article  CAS  PubMed  Google Scholar 

  8. Baek AE, Yu YA, He S, Wardell SE, Chang CY, Kwon S, Pillai RV, McDowell HB, Thompson JW, Dubois LG et al (2017) The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun 8:864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Balasubramaniyan N, Luo Y, Sun A-Q, Suchy FJ (2013) SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem 288:13850–13862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barone I, Vircillo V, Giordano C, Gelsomino L, Győrffy B, Tarallo R, Rinaldi A, Bruno G, Caruso A, Romeo F et al (2018) Activation of Farnesoid X receptor impairs the tumor-promoting function of breast cancer-associated fibroblasts. Cancer Lett 437:89–99

    Article  CAS  PubMed  Google Scholar 

  11. Battaglia S, Maguire O, Thorne JL, Hornung LB, Doig CL, Liu S, Sucheston LE, Bianchi A, Khanim FL, Gommersall LM et al (2010) Elevated NCOR1 disrupts PPARalpha/gamma signaling in prostate cancer and forms a targetable epigenetic lesion. Carcinogenesis 31:1650–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, Russell DW (2009) 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc Natl Acad Sci U S A 106:16764–16769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Becares N, Gage MC, Pineda-Torra I (2017) Posttranslational modifications of lipid-activated nuclear receptors: focus on metabolism. Endocrinology 158:213–225

    Article  CAS  PubMed  Google Scholar 

  14. Becares N, Gage MC, Voisin M, Shrestha E, Martin-Gutierrez L, Liang N, Louie R, Pourcet B, Pello OM, Luong TV et al (2019) Impaired LXRalpha phosphorylation attenuates progression of fatty liver disease. Cell Rep 26:984–995 e986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, Shih R, Parks JS, Edwards PA, Jamieson BD, Tontonoz P (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134:97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bideyan L, Fan W, Kaczor-Urbanowicz KE, Priest C, Casero D, Tontonoz P (2022) Integrative analysis reveals multiple modes of LXR transcriptional regulation in liver. Proc Natl Acad Sci U S A 119:e2122683119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T, Shui G, Lacaze P, Watterson S, Griffiths SJ, Spann NJ et al (2013) The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blind RD, Sablin EP, Kuchenbecker KM, Chiu HJ, Deacon AM, Das D, Fletterick RJ, Ingraham HA (2014) The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1. Proc Natl Acad Sci U S A 111:15054–15059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boergesen M, Pedersen TA, Gross B, van Heeringen SJ, Hagenbeek D, Bindesboll C, Caron S, Lalloyer F, Steffensen KR, Nebb HI et al (2012) Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites. Mol Cell Biol 32:852–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Broad RV, Jones SJ, Teske MC, Wastall LM, Hanby AM, Thorne JL, Hughes TA (2021) Inhibition of interferon-signalling halts cancer-associated fibroblast-dependent protection of breast cancer cells from chemotherapy. Br J Cancer 124:1110–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Broekema MF, Hollman DAA, Koppen A, van den Ham HJ, Melchers D, Pijnenburg D, Ruijtenbeek R, van Mil SWC, Houtman R, Kalkhoven E (2018) Profiling of 3696 nuclear receptor-Coregulator interactions: a resource for biological and clinical discovery. Endocrinology 159:2397–2407

    Article  CAS  PubMed  Google Scholar 

  22. Brunmeir R, Xu F (2018) Functional regulation of PPARs through post-translational modifications. Int J Mol Sci 19:1738

    Article  PubMed Central  CAS  Google Scholar 

  23. Bu DX, Tarrio M, Maganto-Garcia E, Stavrakis G, Tajima G, Lederer J, Jarolim P, Freeman GJ, Sharpe AH, Lichtman AH (2011) Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler Thromb Vasc Biol 31:1100–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calder PC (2020) Eicosanoids. Essays Biochem 64:423–441

    Article  CAS  PubMed  Google Scholar 

  25. Camp HS, Tafuri SR, Leff T (1999) c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma1 and negatively regulates its transcriptional activity. Endocrinology 140:392–397

    Article  CAS  PubMed  Google Scholar 

  26. Carino A, Biagioli M, Marchiano S, Scarpelli P, Zampella A, Limongelli V, Fiorucci S (2018) Disruption of TFGbeta-SMAD3 pathway by the nuclear receptor SHP mediates the antifibrotic activities of BAR704, a novel highly selective FXR ligand. Pharmacol Res 131:17–31

    Article  CAS  PubMed  Google Scholar 

  27. Carpenter KJ, Valfort AC, Steinauer N, Chatterjee A, Abuirqeba S, Majidi S, Sengupta M, Di Paolo RJ, Shornick LP, Zhang J, Flaveny CA (2019) LXR-inverse agonism stimulates immune-mediated tumor destruction by enhancing CD8 T-cell activity in triple negative breast cancer. Sci Rep 9:19530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Celhay O, Bousset L, Guy L, Kemeny JL, Leoni V, Caccia C, Trousson A, Damon-Soubeyrant C, De Haze A, Sabourin L et al (2019) Individual comparison of cholesterol metabolism in Normal and tumour areas in radical prostatectomy specimens from patients with prostate cancer: results of the CHOMECAP study. Eur Urol Oncol 2:198–206

    Article  PubMed  Google Scholar 

  29. Chamoto K, Chowdhury PS, Kumar A, Sonomura K, Matsuda F, Fagarasan S, Honjo T (2017) Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A 114:E761–E770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang NW, Huang YP (2019) The RNA degradation pathway is involved in PPARα-modulated anti-oral tumorigenesis. Biomedicine 9:27

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen M, Beaven S, Tontonoz P (2005) Identification and characterization of two alternatively spliced transcript variants of human liver X receptor alpha. J Lipid Res 46:2570–2579

    Article  CAS  PubMed  Google Scholar 

  32. Chen L, Peng J, Wang Y, Jiang H, Wang W, Dai J, Tang M, Wei Y, Kuang H, Xu G et al (2020) Fenofibrate-induced mitochondrial dysfunction and metabolic reprogramming reversal: the anti-tumor effects in gastric carcinoma cells mediated by the PPAR pathway. Am J Transl Res 12:428–446

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chiang JYL, Ferrell JM (2020) Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol 318:G554–g573

    Article  PubMed  PubMed Central  Google Scholar 

  34. Choi SS, Kim ES, Koh M, Lee SJ, Lim D, Yang YR, Jang HJ, Seo KA, Min SH, Lee IH et al (2014) A novel non-agonist peroxisome proliferator-activated receptor gamma (PPARgamma) ligand UHC1 blocks PPARgamma phosphorylation by cyclin-dependent kinase 5 (CDK5) and improves insulin sensitivity. J Biol Chem 289:26618–26629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chowdhury PS, Chamoto K, Kumar A, Honjo T (2018) PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8(+) T cells and facilitates anti-PD-1 therapy. Cancer Immunol Res 6:1375–1387

    Article  CAS  PubMed  Google Scholar 

  36. Chuu CP, Lin HP (2010) Antiproliferative effect of LXR agonists T0901317 and 22(R)-hydroxycholesterol on multiple human cancer cell lines. Anticancer Res 30:3643–3648

    CAS  PubMed  Google Scholar 

  37. Chuu CP, Hiipakka RA, Kokontis JM, Fukuchi J, Chen RY, Liao S (2006) Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer Res 66:6482–6486

    Article  CAS  PubMed  Google Scholar 

  38. Chuu CP, Kokontis JM, Hiipakka RA, Liao SS (2007) Modulation of liver X receptor signaling as novel therapy for prostate cancer. J Biomed Sci 14:543–553

    Article  CAS  PubMed  Google Scholar 

  39. Cioccoloni G, Aquino A, Notarnicola M, Caruso MG, Bonmassar E, Zonfrillo M, Caporali S, Faraoni I, Villiva C, Fuggetta MP, Franzese O (2020) Fatty acid synthase inhibitor orlistat impairs cell growth and down-regulates PD-L1 expression of a human T-cell leukemia line. J Chemother 32:30–40

    Article  CAS  PubMed  Google Scholar 

  40. Clyne CD, Speed CJ, Zhou J, Simpson ER (2002) Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem 277:20591–20597

    Article  CAS  PubMed  Google Scholar 

  41. Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A (2014) Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS One 9:e93280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Compe E, Drané P, Laurent C, Diderich K, Braun C, Hoeijmakers JHJ, Egly J-M (2005) Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol Cell Biol 25:6065–6076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crowder MK, Seacrist CD, Blind RD (2017)Phospholipid regulation of the nuclear receptor superfamily. Adv Biol Regul 63:6–14

    Article  CAS  PubMed  Google Scholar 

  44. Dalenc F, Iuliano L, Filleron T, Zerbinati C, Voisin M, Arellano C, Chatelut E, Marquet P, Samadi M, Roche H et al (2017) Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: results of the OXYTAM study. J Steroid Biochem Mol Biol 169:210–218

    Article  CAS  PubMed  Google Scholar 

  45. D’Aniello E, Fellous T, Iannotti FA, Gentile A, Allara M, Balestrieri F, Gray R, Amodeo P, Vitale RM, Di Marzo V (2019) Identification and characterization of phytocannabinoids as novel dual PPARalpha/gamma agonists by a computational and in vitro experimental approach. Biochim Biophys Acta Gen Subj 1863:586–597

    Article  PubMed  CAS  Google Scholar 

  46. Di Ciaula A, Garruti G, Lunardi Baccetto R, Molina-Molina E, Bonfrate L, Wang DQH, Portincasa P (2017) Bile acid physiology. Ann Hepatol 16:S4–S14

    Article  PubMed  CAS  Google Scholar 

  47. Dias IHK, Milic I, Lip GYH, Devitt A, Polidori MC, Griffiths HR (2018) Simvastatin reduces circulating oxysterol levels in men with hypercholesterolaemia. Redox Biol 16:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Doig CL, Singh PK, Dhiman VK, Thorne JL, Battaglia S, Sobolewski M, Maguire O, O’Neill LP, Turner BM, McCabe CJ et al (2012) Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns. Carcinogenesis 34:248–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast-Woelbern HR, Bowman ME, Ferrer J-L, Anisfeld AM, Edwards PA et al (2003) A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell 11:1079–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. DuSell CD, Umetani M, Shaul PW, Mangelsdorf DJ, McDonnell DP (2008) 27-hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol 22:65–77

    Article  CAS  PubMed  Google Scholar 

  51. Endo-Umeda K, Uno S, Fujimori K, Naito Y, Saito K, Yamagishi K, Jeong Y, Miyachi H, Tokiwa H, Yamada S, Makishima M (2012) Differential expression and function of alternative splicing variants of human liver X receptor alpha. Mol Pharmacol 81:800–810

    Article  CAS  PubMed  Google Scholar 

  52. Erice O, Labiano I, Arbelaiz A, Santos-Laso A, Munoz-Garrido P, Jimenez-Agüero R, Olaizola P, Caro-Maldonado A, Martín-Martín N, Carracedo A et al (2018) Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression. Biochim Biophys Acta (BBA) – Mol Basis Dis 1864:1335–1344

    Article  CAS  Google Scholar 

  53. Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y et al (2015) Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 21:159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feldmann R, Fischer C, Kodelja V, Behrens S, Haas S, Vingron M, Timmermann B, Geikowski A, Sauer S (2013) Genome-wide analysis of LXRalpha activation reveals new transcriptional networks in human atherosclerotic foam cells. Nucleic Acids Res 41:3518–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, Zhu Q, Zhang T, Leblanc M, Liu S et al (2019) FXR regulates intestinal cancer stem cell proliferation. Cell 176(1098–1112):e1018

    Google Scholar 

  56. Fujino T, Sakamaki R, Ito H, Furusato Y, Sakamoto N, Oshima T, Hayakawa M (2017) Farnesoid X receptor regulates the growth of renal adenocarcinoma cells without affecting that of a normal renal cell-derived cell line. J Toxicol Sci 42:259–265

    Article  CAS  PubMed  Google Scholar 

  57. Fukuchi J, Hiipakka RA, Kokontis JM, Hsu S, Ko AL, Fitzgerald ML, Liao S (2004) Androgenic suppression of ATP-binding cassette transporter A1 expression in LNCaP human prostate cancer cells. Cancer Res 64:7682–7685

    Article  CAS  PubMed  Google Scholar 

  58. Fyffe SA, Alphey MS, Buetow L, Smith TK, Ferguson MAJ, Sørensen MD, Björkling F, Hunter WN (2006) Recombinant human PPAR-β/δ ligand-binding domain is locked in an activated conformation by endogenous fatty acids. J Mol Biol 356:1005–1013

    Article  CAS  PubMed  Google Scholar 

  59. Gadaleta RM, Cariello M, Sabbà C, Moschetta A (2015) Tissue-specific actions of FXR in metabolism and cancer. Biochim Biophys Acta 1851:30–39

    Article  CAS  PubMed  Google Scholar 

  60. Garrido-Urbani S, Jemelin S, Deffert C, Carnesecchi S, Basset O, Szyndralewiez C, Heitz F, Page P, Montet X, Michalik L et al (2011) Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism. PLoS One 6:e14665–e14665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gege C, Kinzel O, Steeneck C, Schulz A, Kremoser C (2014) Knocking on FXR’s door: the “hammerhead” -structure series of FXR agonists – amphiphilic isoxazoles with potent in vitro and in vivo activities. Curr Top Med Chem 14:2143–2158

    Article  CAS  PubMed  Google Scholar 

  62. Giaginis C, Karandrea D, Alexandrou P, Giannopoulou I, Tsourouflis G, Troungos C, Danas E, Keramopoulos A, Patsouris E, Nakopoulou L, Theocharis S (2017) High Farnesoid X receptor (FXR) expression is a strong and independent prognosticator in invasive breast carcinoma. Neoplasma 64:633–639

    Article  CAS  PubMed  Google Scholar 

  63. Gilardi F, Giudici M, Mitro N, Maschi O, Guerrini U, Rando G, Maggi A, Cermenati G, Laghezza A, Loiodice F et al (2014) LT175 is a novel PPARalpha/gamma ligand with potent insulin-sensitizing effects and reduced adipogenic properties. J Biol Chem 289:6908–6920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gionfriddo G, Plastina P, Augimeri G, Catalano S, Giordano C, Barone I, Morelli C, Giordano F, Gelsomino L, Sisci D et al (2020) Modulating tumor-associated macrophage polarization by synthetic and natural PPARγ ligands as a potential target in breast cancer. Cell 9:174

    Article  CAS  Google Scholar 

  65. Giordano C, Barone I, Vircillo V, Panza S, Malivindi R, Gelsomino L, Pellegrino M, Rago V, Mauro L, Lanzino M et al (2016) Activated FXR inhibits leptin signaling and counteracts tumor-promoting activities of cancer-associated fibroblasts in breast malignancy. Sci Rep 6:21782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gotsman I, Grabie N, Dacosta R, Sukhova G, Sharpe A, Lichtman AH (2007) Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J Clin Invest 117:2974–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Goyal G, Wong K, Nirschl CJ, Souders N, Neuberg D, Anandasabapathy N, Dranoff G (2018) PPARgamma contributes to immunity induced by cancer cell vaccines that secrete GM-CSF. Cancer Immunol Res 6:723–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grabacka M, Pierzchalska M, Dean M, Reiss K (2016) Regulation of ketone Body metabolism and the role of PPARα. Int J Mol Sci 17:2093

    Article  PubMed Central  CAS  Google Scholar 

  69. Griffiths WJ, Wang Y (2021) Sterols, oxysterols, and accessible cholesterol: Signalling for homeostasis, in immunity and during development. Front Physiol 12:723224

    Article  PubMed  PubMed Central  Google Scholar 

  70. Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications – a review. Nutr J 13:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gu P, Goodwin B, Chung AC, Xu X, Wheeler DA, Price RR, Galardi C, Peng L, Latour AM, Koller BH et al (2005) Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Mol Cell Biol 25:3492–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guan B, Li H, Yang Z, Hoque A, Xu X (2013) Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer 119:1321–1329

    Article  CAS  PubMed  Google Scholar 

  73. Hays T, Rusyn I, Burns AM, Kennett MJ, Ward JM, Gonzalez FJ, Peters JM (2005) Role of peroxisome proliferator-activated receptor-α (PPARα) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis 26:219–227

    Article  CAS  PubMed  Google Scholar 

  74. He S, Ma L, Baek AE, Vardanyan A, Vembar V, Chen JJ, Nelson AT, Burdette JE, Nelson ER (2019) Host CYP27A1 expression is essential for ovarian cancer progression. Endocr Relat Cancer 26:659–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science (New York, NY) 274:2100–2103

    Article  CAS  Google Scholar 

  76. Huang YP, Chang NW (2016) PPARα modulates gene expression profiles of mitochondrial energy metabolism in oral tumorigenesis. Biomedicine 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hutchinson SA, Lianto P, Moore JB, Hughes TA, Thorne JL (2019a) Phytosterols inhibit side-chain oxysterol mediated activation of LXR in breast cancer cells. Int J Mol Sci 20:3241

    Article  CAS  PubMed Central  Google Scholar 

  78. Hutchinson SA, Lianto P, Roberg-Larsen H, Battaglia S, Hughes TA, Thorne JL (2019b) ER-negative breast cancer is highly responsive to cholesterol metabolite Signalling. Nutrients 11:2618

    Article  CAS  PubMed Central  Google Scholar 

  79. Hutchinson SA, Websdale A, Cioccoloni G, Roberg-Larsen H, Lianto P, Kim B, Rose A, Soteriou C, Pramanik A, Wastall LM et al (2021) Liver x receptor alpha drives chemoresistance in response to side-chain hydroxycholesterols in triple negative breast cancer. Oncogene 40:2872–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iankova I, Petersen RK, Annicotte JS, Chavey C, Hansen JB, Kratchmarova I, Sarruf D, Benkirane M, Kristiansen K, Fajas L (2006) Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis. Mol Endocrinol (Baltimore, Md) 20:1494–1505

    Article  CAS  Google Scholar 

  81. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383:728–731

    Article  CAS  PubMed  Google Scholar 

  82. Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ (1999) Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A 96:266–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jennewein C, von Knethen A, Schmid T, Brüne B (2010) MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor γ (PPARγ) mRNA destabilization. J Biol Chem 285:11846–11853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jeong E, Koo JE, Yeon SH, Kwak MK, Hwang DH, Lee JY (2014) PPARdelta deficiency disrupts hypoxia-mediated tumorigenic potential of colon cancer cells. Mol Carcinog 53:926–937

    Article  CAS  PubMed  Google Scholar 

  85. Jiang L, Zhao X, Xu J, Li C, Yu Y, Wang W, Zhu L (2019) The protective effect of dietary Phytosterols on cancer risk: a systematic meta-analysis. J Oncol 2019:7479518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Jiang L, Zhang H, Xiao D, Wei H, Chen Y (2021) Farnesoid X receptor (FXR): structures and ligands. Comput Struct Biotechnol J 19:2148–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, Mastrandrea L, Buck MJ, Baker RD, Genco RJ et al (2018) Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67:1881–1891

    Article  CAS  PubMed  Google Scholar 

  88. Jin L, Feng X, Rong H, Pan Z, Inaba Y, Qiu L, Zheng W, Lin S, Wang R, Wang Z et al (2013) The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism. Nat Commun 4:1937

    Article  PubMed  CAS  Google Scholar 

  89. Jin JQ, Han JS, Ha J, Baek HS, Lim DJ (2021) Lobeglitazone, a peroxisome proliferator-activated receptor-gamma agonist, inhibits papillary thyroid cancer cell migration and invasion by suppressing p38 MAPK signaling pathway. Endocrinol Metab (Seoul) 36:1095–1110

    Article  CAS  Google Scholar 

  90. Journe F, Durbecq V, Chaboteaux C, Rouas G, Laurent G, Nonclercq D, Sotiriou C, Body J-J, Larsimont D (2009) Association between farnesoid X receptor expression and cell proliferation in estrogen receptor-positive luminal-like breast cancer from postmenopausal patients. Breast Cancer Res Treat 115:523–535

    Article  CAS  PubMed  Google Scholar 

  91. Karaboga H, Huang W, Srivastava S, Widmann S, Addanki S, Gamage KT, Mazhar Z, Ebalunode JO, Briggs JM, Gustafsson JA et al (2020) Screening of focused compound library targeting liver X receptors in pancreatic cancer identified ligands with inverse agonist and degrader activity. ACS Chem Biol 15:2916–2928

    Article  CAS  PubMed  Google Scholar 

  92. Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 390:247–251

    Article  CAS  PubMed  Google Scholar 

  93. Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, Tsang S, Wu S-Y, Chiang C-M, Veenstra TD (2009) FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 10:392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim TW, Hong DW, Park JW, Hong SH (2020) CB11, a novel purine-based PPAR ligand, overcomes radio-resistance by regulating ATM signalling and EMT in human non-small-cell lung cancer cells. Br J Cancer 123:1737–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Knouff C, Auwerx J (2004) Peroxisome proliferator-activated receptor-γ calls for activation in moderation: lessons from genetics and pharmacology. Endocr Rev 25:899–918

    Article  CAS  PubMed  Google Scholar 

  96. Komor MA, Pham TV, Hiemstra AC, Piersma SR, Bolijn AS, Schelfhorst T, Delis-van Diemen PM, Tijssen M, Sebra RP, Ashby M et al (2017) Identification of differentially expressed splice variants by the Proteogenomic pipeline Splicify. Mol Cell Proteomics 16:1850–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Korpal M, Puyang X, Jeremy Wu Z, Seiler R, Furman C, Oo HZ, Seiler M, Irwin S, Subramanian V, Julie Joshi J et al (2017) Evasion of immunosurveillance by genomic alterations of PPARγ/RXRα in bladder cancer. Nat Commun 8:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Koutsounas I, Theocharis S, Patsouris E, Giaginis C (2013) Pregnane X receptor (PXR) at the crossroads of human metabolism and disease. Curr Drug Metab 14:341–350

    Article  CAS  PubMed  Google Scholar 

  99. Krattinger R, Bostrom A, Schioth HB, Thasler WE, Mwinyi J, Kullak-Ublick GA (2016) microRNA-192 suppresses the expression of the farnesoid X receptor. Am J Physiol Gastrointest Liver Physiol 310:G1044–G1051

    Article  PubMed  Google Scholar 

  100. Krylova IN, Sablin EP, Moore J, Xu RX, Waitt GM, MacKay JA, Juzumiene D, Bynum JM, Madauss K, Montana V et al (2005) Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120:343–355

    Article  CAS  PubMed  Google Scholar 

  101. la González A, Torresano M, Rosa J, Alonso B, Capa-Sardón E, Puig-Kroger A, Vega M, Castrillo A, Corbi A (2021) LXR nuclear receptors prompt a pro-inflammatory gene and functional profile in human macrophages. https://www.researchsquare.com/article/rs-169946/v1

  102. Lange Y, Steck TL, Ye J, Lanier MH, Molugu V, Ory D (2009) Regulation of fibroblast mitochondrial 27-hydroxycholesterol production by active plasma membrane cholesterol. J Lipid Res 50:1881–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lax S, Schauer G, Prein K, Kapitan M, Silbert D, Berghold A, Berger A, Trauner M (2012) Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis. Int J Cancer 130:2232–2239

    Article  CAS  PubMed  Google Scholar 

  104. Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS et al (2011a) miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 31:626–638

    Article  CAS  PubMed  Google Scholar 

  105. Lee JM, Lee YK, Mamrosh JL, Busby SA, Griffin PR, Pathak MC, Ortlund EA, Moore DD (2011b) A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature 474:506–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li H, Sorenson AL, Poczobutt J, Amin J, Joyal T, Sullivan T, Crossno JT Jr, Weiser-Evans MC, Nemenoff RA (2011) Activation of PPARgamma in myeloid cells promotes lung cancer progression and metastasis. PLoS One 6:e28133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li N, Wang X, Zhang J, Liu C, Li Y, Feng T, Xu Y, Si S (2014) Identification of a novel partial agonist of liver X receptor alpha (LXRalpha) via screening. Biochem Pharmacol 92:438–447

    Article  CAS  PubMed  Google Scholar 

  108. Li N, Wang X, Liu P, Lu D, Jiang W, Xu Y, Si S (2016) E17110 promotes reverse cholesterol transport with liver X receptor beta agonist activity in vitro. Acta Pharm Sin B 6:198–204

    Article  PubMed  PubMed Central  Google Scholar 

  109. Li N, Wang X, Xu Y, Lin Y, Zhu N, Liu P, Lu D, Si S (2017) Identification of a novel liver X receptor agonist that regulates the expression of key cholesterol homeostasis genes with distinct pharmacological characteristics. Mol Pharmacol 91:264–276

    Article  CAS  PubMed  Google Scholar 

  110. Li Y, Chen H, Ke Z, Huang J, Huang L, Yang B, Fan S, Huang C (2020) Identification of isotschimgine as a novel farnesoid X receptor agonist with potency for the treatment of obesity in mice. Biochem Biophys Res Commun 521:639–645

    Article  CAS  PubMed  Google Scholar 

  111. Liang H, Kowalczyk P, Junco JJ, Klug-De Santiago HL, Malik G, Wei SJ, Slaga TJ (2014) Differential effects on lung cancer cell proliferation by agonists of glucocorticoid and PPARα receptors. Mol Carcinog 53:753–763

    Article  CAS  PubMed  Google Scholar 

  112. Lianto P, Hutchinson SA, Moore JB, Hughes TA, Thorne JL (2021) Characterization and prognostic value of LXR splice variants in triple-negative breast cancer. iScience 24:103212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin YN, Wang CCN, Chang HY, Chu FY, Hsu YA, Cheng WK, Ma WC, Chen CJ, Wan L, Lim YP (2018) Ursolic acid, a novel liver X receptor alpha (LXRalpha) antagonist inhibiting ligand-induced nonalcoholic fatty liver and drug-induced lipogenesis. J Agric Food Chem 66:11647–11662

    Article  CAS  PubMed  Google Scholar 

  114. Liu C, Feng T, Zhu N, Liu P, Han X, Chen M, Wang X, Li N, Li Y, Xu Y, Si S (2015) Identification of a novel selective agonist of PPARgamma with no promotion of adipogenesis and less inhibition of osteoblastogenesis. Sci Rep 5:9530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu B, Yi Z, Guan X, Zeng YX, Ma F (2017) The relationship between statins and breast cancer prognosis varies by statin type and exposure time: a meta-analysis. Breast Cancer Res Treat 164:1–11

    Article  CAS  PubMed  Google Scholar 

  116. Liu Y, Wei Z, Ma X, Yang X, Chen Y, Sun L, Ma C, Miao QR, Hajjar DP, Han J, Duan Y (2018) 25-hydroxycholesterol activates the expression of cholesterol 25-hydroxylase in an LXR-dependent mechanism. J Lipid Res 59:439–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lizard G, Poirot M, Iuliano L (2021) European network for oxysterol research (ENOR): 10th anniversary. J Steroid Biochem Mol Biol 214:105996

    Article  CAS  PubMed  Google Scholar 

  118. Long MD, Thorne JL, Russell J, Battaglia S, Singh PK, Sucheston-Campbell LE, Campbell MJ (2014) Cooperative behavior of the nuclear receptor superfamily and its deregulation in prostate cancer. Carcinogenesis 35:262–271

    Article  CAS  PubMed  Google Scholar 

  119. Lu Y, Zheng W, Lin S, Guo F, Zhu Y, Wei Y, Liu X, Jin S, Jin L, Li Y (2018) Identification of an Oleanane-type triterpene Hedragonic acid as a novel Farnesoid X receptor ligand with liver protective effects and anti-inflammatory activity. Mol Pharmacol 93:63–72

    Article  CAS  PubMed  Google Scholar 

  120. Luo Y, Xie C, Brocker CN, Fan J, Wu X, Feng L, Wang Q, Zhao J, Lu D, Tandon M et al (2019) Intestinal PPARα protects against colon carcinogenesis via regulation of methyltransferases DNMT1 and PRMT6. Gastroenterology 157:744–759.e744

    Article  CAS  PubMed  Google Scholar 

  121. Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, Wang Q, Yang M, Kalady MF, Qian J et al (2019) Cholesterol induces CD8(+) T cell exhaustion in the tumor microenvironment. Cell Metab 30:143–156 e145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ma L, Wang L, Nelson AT, Han C, He S, Henn MA, Menon K, Chen JJ, Baek AE, Vardanyan A et al (2020) 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression. Cancer Lett 493:266–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–1316

    Article  CAS  PubMed  Google Scholar 

  124. Miranda DA, Krause WC, Cazenave-Gassiot A, Suzawa M, Escusa H, Foo JC, Shihadih DS, Stahl A, Fitch M, Nyangau E et al (2018) LRH-1 regulates hepatic lipid homeostasis and maintains arachidonoyl phospholipid pools critical for phospholipid diversity. JCI Insight 3:e96151

    Article  PubMed Central  Google Scholar 

  125. Mohammed H, Taylor C, Brown GD, Papachristou EK, Carroll JS, D’Santos CS (2016) Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat Protoc 11:316–326

    Article  CAS  PubMed  Google Scholar 

  126. Moresco MA, Raccosta L, Corna G, Maggioni D, Soncini M, Bicciato S, Doglioni C, Russo V (2018) Enzymatic inactivation of oxysterols in breast tumor cells constraints metastasis formation by reprogramming the metastatic lung microenvironment. Front Immunol 9:2251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Morinishi T, Tokuhara Y, Ohsaki H, Ibuki E, Kadota K, Hirakawa E (2019) Activation and expression of peroxisome proliferator-activated receptor alpha are associated with tumorigenesis in colorectal carcinoma. PPAR Res 2019:7486727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Musille PM, Pathak M, Lauer JL, Griffin PR, Ortlund EA (2013) Divergent sequence tunes ligand sensitivity in phospholipid-regulated hormone receptors. J Biol Chem 288:20702–20712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V et al (2013) 27-hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342:1094–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nie H, Song C, Wang D, Cui S, Ren T, Cao Z, Liu Q, Chen Z, Chen X, Zhou Y (2017) MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR. Biochim Biophys Acta Mol basis Dis 1863:3087–3094

    Article  CAS  PubMed  Google Scholar 

  131. Nie X, Liu H, Wei X, Li L, Lan L, Fan L, Ma H, Liu L, Zhou Y, Hou R, Chen WD (2021) miRNA-382-5p suppresses the expression of Farnesoid X receptor to promote progression of liver cancer. Cancer Manag Res 13:8025–8035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nijmeijer RM, Gadaleta RM, van Mil SW, van Bodegraven AA, Crusius JB, Dijkstra G, Hommes DW, de Jong DJ, Stokkers PC, Verspaget HW et al (2011) Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. PLoS One 6:e23745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Oishi Y, Spann NJ, Link VM, Muse ED, Strid T, Edillor C, Kolar MJ, Matsuzaka T, Hayakawa S, Tao J et al (2017) SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism. Cell Metab 25:412–427

    Article  CAS  PubMed  Google Scholar 

  134. Ooi EM, Watts GF, Sprecher DL, Chan DC, Barrett PH (2011) Mechanism of action of a peroxisome proliferator-activated receptor (PPAR)-delta agonist on lipoprotein metabolism in dyslipidemic subjects with central obesity. J Clin Endocrinol Metab 96:E1568–E1576

    Article  CAS  PubMed  Google Scholar 

  135. Otte K, Kranz H, Kober I, Thompson P, Hoefer M, Haubold B, Remmel B, Voss H, Kaiser C, Albers M et al (2003) Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol 23:864–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, Patterson AD, Gonzalez FJ, Chiang JYL (2018) Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology (Baltimore, Md) 68:1574–1588

    Article  CAS  Google Scholar 

  138. Pattanayak SP, Bose P, Sunita P, Siddique MUM, Lapenna A (2018) Bergapten inhibits liver carcinogenesis by modulating LXR/PI3K/Akt and IDOL/LDLR pathways. Biomed Pharmacother 108:297–308

    Article  CAS  PubMed  Google Scholar 

  139. Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62:720–733

    Article  CAS  PubMed  Google Scholar 

  140. Pehkonen P, Welter-Stahl L, Diwo J, Ryynanen J, Wienecke-Baldacchino A, Heikkinen S, Treuter E, Steffensen KR, Carlberg C (2012) Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics 13:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Peters JM, Cheung C, Gonzalez FJ (2005) Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand? J Mol Med 83:774–785

    Article  CAS  PubMed  Google Scholar 

  142. Peters JM, Shah YM, Gonzalez FJ (2012) The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 12:181–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Plat J, Nichols JA, Mensink RP (2005) Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation. J Lipid Res 46:2468–2476

    Article  CAS  PubMed  Google Scholar 

  144. Poirot M, Silvente-Poirot S (2013) Cholesterol-5,6-epoxides: chemistry, biochemistry, metabolic fate and cancer. Biochimie 95:622–631

    Article  CAS  PubMed  Google Scholar 

  145. Poirot M, Silvente-Poirot S (2018) The tumor-suppressor cholesterol metabolite, dendrogenin A, is a new class of LXR modulator activating lethal autophagy in cancers. Biochem Pharmacol 153:75–81

    Article  CAS  PubMed  Google Scholar 

  146. Pommier AJ, Dufour J, Alves G, Viennois E, De Boussac H, Trousson A, Volle DH, Caira F, Val P, Arnaud P et al (2013) Liver x receptors protect from development of prostatic intra-epithelial neoplasia in mice. PLoS Genet 9:e1003483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pourcet B, Pineda-Torra I, Derudas B, Staels B, Glineur C (2010) SUMOylation of human peroxisome proliferator-activated receptor alpha inhibits its trans-activity through the recruitment of the nuclear corepressor NCoR. J Biol Chem 285:5983–5992

    Article  CAS  PubMed  Google Scholar 

  148. Premalatha R, Srikumar K, Vijayalaksmi D, Kumar GN, Mathur PP (2014) 28-Homobrassinolide: a novel oxysterol transactivating LXR gene expression. Mol Biol Rep 41:7447–7461

    Article  CAS  PubMed  Google Scholar 

  149. Raccosta L, Fontana R, Maggioni D, Lanterna C, Villablanca EJ, Paniccia A, Musumeci A, Chiricozzi E, Trincavelli ML, Daniele S et al (2013) The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med 210:1711–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ramanan S, Kooshki M, Zhao W, Hsu F-C, Robbins ME (2008) PPARα ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-κB and AP-1 pathways. Free Radical Biol Med 45:1695–1704

    Article  CAS  Google Scholar 

  151. Riehl A, Nemeth J, Angel P, Hess J (2009) The receptor RAGE: bridging inflammation and cancer. Cell Commun Signal 7:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Sablin EP, Blind RD, Uthayaruban R, Chiu HJ, Deacon AM, Das D, Ingraham HA, Fletterick RJ (2015) Structure of Liver Receptor Homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket. J Struct Biol 192:342–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Schumann T, Adhikary T, Wortmann A, Finkernagel F, Lieber S, Schnitzer E, Legrand N, Schober Y, Nockher WA, Toth PM et al (2015) Deregulation of PPARbeta/delta target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment. Oncotarget 6:13416–13433

    Article  PubMed  PubMed Central  Google Scholar 

  154. Segala G, David M, de Medina P, Poirot MC, Serhan N, Vergez F, Mougel A, Saland E, Carayon K, Leignadier J et al (2017) Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nat Commun 8:1903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Seiri P, Abi A, Soukhtanloo M (2019) PPAR-gamma: its ligand and its regulation by microRNAs. J Cell Biochem. https://doi.org/10.1002/jcb.28419

  156. Sepe V, Festa C, Renga B, Carino A, Cipriani S, Finamore C, Masullo D, del Gaudio F, Monti MC, Fiorucci S, Zampella A (2016) Insights on FXR selective modulation. Speculation on bile acid chemical space in the discovery of potent and selective agonists. Sci Rep 6:19008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shin MH, Lee S-R, Kim M-K, Shin C-Y, Lee DH, Chung JH (2016) Activation of peroxisome proliferator-activated receptor alpha improves aged and UV-irradiated skin by catalase induction. PloS One 11:e0162628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Sim WC, Kim DG, Lee KJ, Choi YJ, Choi YJ, Shin KJ, Jun DW, Park SJ, Park HJ, Kim J et al (2015) Cinnamamides, novel liver X receptor antagonists that inhibit ligand-induced lipogenesis and fatty liver. J Pharmacol Exp Ther 355:362–369

    Article  CAS  PubMed  Google Scholar 

  159. Solheim S, Hutchinson SA, Lundanes E, Wilson SR, Thorne JL, Roberg-Larsen H (2019) Fast liquid chromatography-mass spectrometry reveals side chain oxysterol heterogeneity in breast cancer tumour samples. J Steroid Biochem Mol Biol 192:105309

    Article  CAS  PubMed  Google Scholar 

  160. Soncini M, Corna G, Moresco M, Coltella N, Restuccia U, Maggioni D, Raccosta L, Lin CY, Invernizzi F, Crocchiolo R et al (2016) 24-hydroxycholesterol participates in pancreatic neuroendocrine tumor development. Proc Natl Acad Sci U S A 113:E6219–E6227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL (2021) Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 81:101080

    Article  CAS  PubMed  Google Scholar 

  162. Srivastava S, Widmann S, Ho C, Nguyen D, Nguyen A, Premaratne A, Gustafsson J, Lin CY (2020) Novel liver X receptor ligand GAC0001E5 disrupts glutamine metabolism and induces oxidative stress in pancreatic cancer cells. Int J Mol Sci 21:9622

    Article  CAS  PubMed Central  Google Scholar 

  163. Stiles AR, Kozlitina J, Thompson BM, McDonald JG, King KS, Russell DW (2014) Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels. Proc Natl Acad Sci U S A 111:E4006–E4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sun D, Zhang J, Xie J, Wei W, Chen M, Zhao X (2012) MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett 586:1472–1479

    Article  CAS  PubMed  Google Scholar 

  165. Sun J, Wang Y, Li Y, Zhao G (2014) Downregulation of PPARγ by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential. J Transl Med 12:168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, Liu J, Deng Y, Xia J, Chen B et al (2018) Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 24:1919–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sun Y, Demagny H, Schoonjans K (2021) Emerging functions of the nuclear receptor LRH-1 in liver physiology and pathology. Biochim Biophys Acta Mol basis Dis 1867:166145

    Article  CAS  PubMed  Google Scholar 

  168. Svensson S, Ostberg T, Jacobsson M, Norström C, Stefansson K, Hallén D, Johansson IC, Zachrisson K, Ogg D, Jendeberg L (2003) Crystal structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains in a fully agonistic conformation. EMBO J 22:4625–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N (2021) Mechanisms mediating the regulation of Peroxisomal fatty acid Beta-oxidation by PPARα. Int J Mol Sci 22:8969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Takahashi S, Tanaka N, Fukami T, Xie C, Yagai T, Kim D, Velenosi TJ, Yan T, Krausz KW, Levi M (2018) Role of farnesoid X receptor and bile acids in hepatic tumor development. Hepatol Commun 2:1567–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tamura S, Okada M, Kato S, Shinoda Y, Shioda N, Fukunaga K, Ui-Tei K, Ueda M (2018) Ouabagenin is a naturally occurring LXR ligand without causing hepatic steatosis as a side effect. Sci Rep 8:2305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Tang X, Guilherme A, Chakladar A, Powelka AM, Konda S, Virbasius JV, Nicoloro SM, Straubhaar J, Czech MP (2006) An RNA interference-based screen identifies MAP 4K4/NIK as a negative regulator of PPARgamma, adipogenesis, and insulin-responsive hexose transport. Proc Natl Acad Sci U S A 103:2087–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Thelen KM, Lutjohann D, Vesalainen R, Janatuinen T, Knuuti J, von Bergmann K, Lehtimaki T, Laaksonen R (2006) Effect of pravastatin on plasma sterols and oxysterols in men. Eur J Clin Pharmacol 62:9–14

    Article  CAS  PubMed  Google Scholar 

  174. Thorne JL, Campbell MJ (2015) Nuclear receptors and the Warburg effect in cancer. Int J Cancer 137:1519–1527

    Article  CAS  PubMed  Google Scholar 

  175. Thulin P, Wei T, Werngren O, Cheung L, Fisher RM, Grander D, Corcoran M, Ehrenborg E (2013) MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor delta in human monocytes during the inflammatory response. Int J Mol Med 31:1003–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Torra IP, Ismaili N, Feig JE, Xu CF, Cavasotto C, Pancratov R, Rogatsky I, Neubert TA, Fisher EA, Garabedian MJ (2008) Phosphorylation of liver X receptor alpha selectively regulates target gene expression in macrophages. Mol Cell Biol 28:2626–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Torrano V, Valcarcel-Jimenez L, Cortazar AR, Liu X, Urosevic J, Castillo-Martin M, Fernández-Ruiz S, Morciano G, Caro-Maldonado A, Guiu M et al (2016) The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol 18:645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, Korach KS, Shaul PW, Mangelsdorf DJ (2007) 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med 13:1185–1192

    Article  CAS  PubMed  Google Scholar 

  179. Valcarcel-Jimenez L, Macchia A, Crosas-Molist E, Schaub-Clerigué A, Camacho L, Martín-Martín N, Cicogna P, Viera-Bardón C, Fernández-Ruiz S, Rodriguez-Hernandez I et al (2019) PGC1α suppresses prostate cancer cell invasion through ERRα transcriptional control. Cancer Res 79:6153–6165

    Article  CAS  PubMed  Google Scholar 

  180. Vedin LL, Lewandowski SA, Parini P, Gustafsson JA, Steffensen KR (2009) The oxysterol receptor LXR inhibits proliferation of human breast cancer cells. Carcinogenesis 30:575–579

    Article  CAS  PubMed  Google Scholar 

  181. Viennois E, Esposito T, Dufour J, Pommier A, Fabre S, Kemeny JL, Guy L, Morel L, Lobaccaro JM, Baron S (2012) Lxralpha regulates the androgen response in prostate epithelium. Endocrinology 153:3211–3223

    Article  CAS  PubMed  Google Scholar 

  182. Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A, Sanvito F, Ponzoni M, Valentinis B, Bregni M et al (2010) Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16:98–105

    Article  CAS  PubMed  Google Scholar 

  183. Voisin M, de Medina P, Mallinger A, Dalenc F, Huc-Claustre E, Leignadier J, Serhan N, Soules R, Segala G, Mougel A et al (2017) Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proc Natl Acad Sci U S A 114:E9346–E9355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Vrins CL, van der Velde AE, van den Oever K, Levels JH, Huet S, Oude Elferink RP, Kuipers F, Groen AK (2009) Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. J Lipid Res 50:2046–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wagner N, Wagner K-D (2020) PPAR Beta/Delta and the Hallmarks of cancer. Cells 9:1133

    Article  CAS  PubMed Central  Google Scholar 

  186. Wang Y-X, Lee C-H, Tiep S, Yu RT, Ham J, Kang H, Evans RM (2003) Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113:159–170

    Article  CAS  PubMed  Google Scholar 

  187. Wang W, Zhan M, Li Q, Chen W, Chu H, Huang Q, Hou Z, Man M, Wang J (2016) FXR agonists enhance the sensitivity of biliary tract cancer cells to cisplatin via SHP dependent inhibition of Bcl-xL expression. Oncotarget 7:34617

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wang Y, Lin L, Huang Y, Sun J, Wang X, Wang P (2019) MicroRNA-138 suppresses Adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells by targeting lipoprotein lipase. Yonsei Med J 60:1187–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wood KJ, Sawitzki B (2006) Interferon gamma: a crucial role in the function of induced regulatory T cells in vivo. Trends Immunol 27:183–187

    Article  CAS  PubMed  Google Scholar 

  190. Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, Thompson B, Girard L, Mineo C, Brekken RA et al (2013a) 27-hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep 5:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wu C, Hussein MA, Shrestha E, Leone S, Aiyegbo MS, Lambert WM, Pourcet B, Cardozo T, Gustafson JA, Fisher EA et al (2015) Modulation of macrophage gene expression via liver X receptor alpha serine 198 phosphorylation. Mol Cell Biol 35:2024–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, Lunceford J, Cheng J, Chow LQM, Seiwert TY et al (2017) PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res 23:3158–3167

    Article  CAS  PubMed  Google Scholar 

  193. You W, Chen B, Liu X, Xue S, Qin H, Jiang H (2017) Farnesoid X receptor, a novel proto-oncogene in non-small cell lung cancer, promotes tumor growth via directly transactivating CCND1. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  194. Yu J, Li S, Guo J, Xu Z, Zheng J, Sun X (2020) Farnesoid X receptor antagonizes Wnt/β-catenin signaling in colorectal tumorigenesis. Cell Death Dis 11:640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yu J, Yang K, Zheng J, Zhao W, Sun X (2021) Synergistic tumor inhibition of colon cancer cells by nitazoxanide and obeticholic acid, a farnesoid X receptor ligand. Cancer Gene Ther 28:590–601

    Article  CAS  PubMed  Google Scholar 

  196. Zerdes I, Matikas A, Bergh J, Rassidakis GZ, Foukakis T (2018) Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene 37:4639–4661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhang Z, Moon R, Thorne JL, Moore JB (2021) NAFLD and vitamin D: evidence for intersection of microRNA-regulated pathways. Nutr Res Rev:1–20. https://doi.org/10.1017/S095442242100038X

  198. Zhao T, Du H, Blum JS, Yan C (2016) Critical role of PPARgamma in myeloid-derived suppressor cell-stimulated cancer cell proliferation and metastasis. Oncotarget 7:1529–1543

    Article  PubMed  Google Scholar 

  199. Zhao F, Xiao C, Evans KS, Theivanthiran T, DeVito N, Holtzhausen A, Liu J, Liu X, Boczkowski D, Nair S et al (2018) Paracrine Wnt5a-β-catenin signaling triggers a metabolic program that drives dendritic cell Tolerization. Immunity 48:147–160.e147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhou H, Ni Z, Li T, Su L, Zhang L, Liu N, Shi Y (2018) Activation of FXR promotes intestinal metaplasia of gastric cells via SHP-dependent upregulation of the expression of CDX2. Oncol Lett 15:7617–7624

    PubMed  PubMed Central  Google Scholar 

  201. Zhou J, Cui S, He Q, Guo Y, Pan X, Zhang P, Huang N, Ge C, Wang G, Gonzalez FJ et al (2020) SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nat Commun 11:240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhu Y, Xu S, Lu Y, Wei Y, Yao B, Guo F, Zheng X, Wang Y, He Y, Jin L, Li Y (2020) Repositioning an immunomodulatory drug Vidofludimus as a Farnesoid X receptor modulator with therapeutic effects on NAFLD. Front Pharmacol 11:590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zúñiga J, Cancino M, Medina F, Varela P, Vargas R, Tapia G, Videla LA, Fernández V (2011) N-3 PUFA supplementation triggers PPAR-α activation and PPAR-α/NF-κB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury. PLoS ONE 6:e28502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Bodin K et al (2001) Antiepileptic drugs increase plasma levels of 4beta-hydroxycholesterol in humans: evidence for involvement of cytochrome p450 3A4. J Biol Chem 276(42):38685–38689

    Article  CAS  PubMed  Google Scholar 

  205. Norlin M et al (2000) 24-Hydroxycholesterol is a substrate for hepatic cholesterol 7α-hydroxylase (CYP7A). J Lipid Res 41(10):1629–1639

    Article  CAS  PubMed  Google Scholar 

  206. Strushkevich N et al (2011) Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci 108(25):10139–10143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci 96(13):7238–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Andersson S et al (1989) Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem 264(14):8222–8229

    Article  CAS  PubMed  Google Scholar 

  209. Lund EG et al (1998) cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. J Biol Chem 273(51):34316–34327

    Article  CAS  PubMed  Google Scholar 

  210. Bodin K et al (2002) Metabolism of 4 beta-hydroxycholesterol in humans. J Biol Chem 277(35):31534–31540

    Google Scholar 

  211. Norlin M et al (2003) On the substrate specificity of human CYP27A1: implications for bile acid and cholestanol formation. J Lipid Res 44(8):1515–1522

    Article  CAS  PubMed  Google Scholar 

  212. Pikuleva IA et al (1998) Activities of recombinant human cytochrome P450c27 (CYP27) which produce intermediates of alternative bile acid biosynthetic pathways. J Biol Chem 273(29):18153–18160

    Article  CAS  PubMed  Google Scholar 

  213. Li-Hawkins J et al (2000) Expression cloning of an oxysterol 7α-hydroxylase selective for 24-hydroxycholesterol. J Biol Chem 275(22):16543–16549

    Article  CAS  PubMed  Google Scholar 

  214. Yantsevich AV et al (2014) Human steroid and oxysterol 7α‐hydroxylase CYP 7B1: substrate specificity, azole binding and misfolding of clinically relevant mutants. FEBS J 281(6):1700–1713

    Article  CAS  PubMed  Google Scholar 

  215. Griffiths WJ et al (2019) Additional pathways of sterol metabolism: Evidence from analysis of Cyp27a1-/- mouse brain and plasma. Biochim Biophys Acta Mol Cell Biol Lipids 1864(2):191–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Cases S et al (1998) ACAT-2, a second mammalian acyl-CoA: cholesterol acyltransferase its cloning, expression, and characterization. J Biol Chem 273(41):26755–26764

    Article  CAS  PubMed  Google Scholar 

  217. Szedlacsek SE et al (1995) Esterification of oxysterols by human plasma lecithin-cholesterol acyltransferase. J Biol Chem 270(20):11812–11819

    Article  CAS  PubMed  Google Scholar 

  218. La Marca V et al (2016) Lecithin-cholesterol acyltransferase in brain: Does oxidative stress influence the 24-hydroxycholesterol esterification? Neurosci Res 105:19–27

    Article  PubMed  CAS  Google Scholar 

  219. Wang Z et al (2017) Upregulation of hydroxysteroid sulfotransferase 2B1b promotes hepatic oval cell proliferation by modulating oxysterol-induced LXR activation in a mouse model of liver injury. Arch Toxicol 91(1):271–287

    Article  CAS  PubMed  Google Scholar 

  220. Bai Q et al (2011) Sulfation of 25-hydroxycholesterol by SULT2B1b decreases cellular lipids via the LXR/SREBP-1c signaling pathway in human aortic endothelial cells. Atherosclerosis 214(2):350–356

    Article  CAS  PubMed  Google Scholar 

  221. Javitt NB et al (2001) Cholesterol and hydroxycholesterol sulfotransferases: identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression. Endocrinology 142(7):2978–2984

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Thorne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thorne, J.L., Cioccoloni, G. (2022). Nuclear Receptors and Lipid Sensing. In: Campbell, M.J., Bevan, C.L. (eds) Nuclear Receptors in Human Health and Disease. Advances in Experimental Medicine and Biology, vol 1390. Springer, Cham. https://doi.org/10.1007/978-3-031-11836-4_5

Download citation

Publish with us

Policies and ethics