Skip to main content

Composite Mechanics

  • Chapter
  • First Online:
Lectures Notes on Advanced Structured Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 153))

  • 357 Accesses

Abstract

Composite materials have become indispensable in engineering today. These were originally developed to combine different material properties. A typical example is a reinforced concrete structure. Attempts were made here to improve the poor tensile properties through the reinforcement. Later, lightweight considerations were dominant. For example, aircraft engines were limited in their performance, so that, e.g., sandwich structures were used for the airplane structure. Similar considerations were also made for space structures. Today, composites are used in almost all areas of technology. This often involves the question of substituting traditional construction materials in order to better meet the requirements of use. In this context, there are also increasing considerations to reduce production costs. The actual focus is therefore on foams and functionally graded materials. This chapter gives a brief overview of selected current developments in composite mechanics. This is supplemented by numerous publications (among them the main references from the author’s group), so that one can get a good overview with the references listed within these publications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The class of auxetic materials that have a negative Poisson’s ratio (when stretched, they become thicker perpendicular to the applied force), is not in the focus here. However, such values are possible which follows from the positive definiteness of the strain energy.

  2. 2.

    Woldemar Voigt (\(^*\)2 September 1850 Leipzig - \(\dag \)13 December 1919 Göttingen).

  3. 3.

    András (Endre) Reuss (\(^*\)1 July 1900 Budapest - \(\dag \)10 May 1968 Budapest).

  4. 4.

    Stephen Wei-Lun Tsai (\(^*\)6 July 1929, Beijing).

References

Download references

Acknowledgements

This contribution is based on various papers that were created in collaboration with my current and former collaborators (my father Prof. J. Altenbach, Prof. Igor Brigadnov, Prof. Victor A. Eremeyev, Prof. Wolfgang Kissing, Prof. Gennady Lvov, Prof. Konstantin Naumenko, Dr. Lidiia Nazarenko, Prof. Rolands Rikards (\(\dag \)), Prof. Henryk Stolarski, Prof. Pavel Zhilin (\(\dag \))) and former doctoral students (Dr.-Ing. Babara Renner and M.Sc. Sergei Pilipenko).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Altenbach, H. (2022). Composite Mechanics. In: Altenbach, H., Johlitz, M., Merkel, M., Öchsner, A. (eds) Lectures Notes on Advanced Structured Materials. Advanced Structured Materials, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-031-11589-9_1

Download citation

Publish with us

Policies and ethics