Skip to main content

N6-methyladenine: A Rare and Dynamic DNA Mark

  • Chapter
  • First Online:
DNA Methyltransferases - Role and Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1389))

  • 1747 Accesses

Abstract

Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA code to confer many different cellular phenotypes. This biological versatility is accomplished in large part by post-translational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark certain regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al., Prog Mol Biol Transl Sci. 101:25–104, 2011), this chapter will focus on methylation of the 6th position on adenines (6mA). 6mA is a prevalent modification in unicellular organisms and until recently was thought to be restricted to them. A flurry of conflicting studies have proposed that 6mA either does not exist, is present at low levels, or is present at relatively high levels and regulates complex processes in different multicellular eukaryotes. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the proteins that have been reported to bind and regulate 6mA and examine the known and potential functions of this modification in eukaryotes. Finally, we will close with a discussion of the ongoing debate about whether 6mA exists as a directed DNA modification in multicellular eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

We thank S. Burger, N. O’Brown, and E. Pollina for the critical reading of the manuscript. We thank M.H. Rothi for help generating heat maps in Fig. 8.1. We thank C. He for helpful discussions. The work from the Greer laboratory is supported by grants from the NIH (DP2AG055947 and R01AI151215). Z.K.O. was supported by 5T32HD7466-19. We apologize for literature omitted owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lieberman Greer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Brown, Z.K., Greer, E.L. (2022). N6-methyladenine: A Rare and Dynamic DNA Mark. In: Jeltsch, A., Jurkowska, R.Z. (eds) DNA Methyltransferases - Role and Function. Advances in Experimental Medicine and Biology, vol 1389. Springer, Cham. https://doi.org/10.1007/978-3-031-11454-0_8

Download citation

Publish with us

Policies and ethics