Skip to main content

The Use of Machine Learning Techniques to Solve Problems in Forensic Psychiatry

  • Chapter
  • First Online:
Digital Mental Health
  • 846 Accesses

Abstract

Machine learning techniques present with a great deal of promise in forensic psychiatry to predict patient outcomes at an individual level; however, the field currently remains in its infancy. The present chapter provides an overview of predictive models of criminal and violence-related outcomes in psychiatry, as well as the feigning of serious mental illness following arrest to avoid prison sentences. Moreover, this chapter details various machine learning techniques and experimental designs that can be leveraged to address long-standing problems within the field. As such, it aims to provide a series of methodological recommendations for moving the field from advancements in risk prediction towards precision forensics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zitrin A, Hardesty AS, Burdock EI, Drossman AK. Crime and violence among mental patients. Am J Psychiatry. 1976;133(2):142–9. https://doi.org/10.1176/ajp.133.2.142.

    Article  CAS  Google Scholar 

  2. Klassen D, O’Connor WA. Crime, inpatient admissions, and violence among male mental patients. Int J Law Psychiatry. 1988;11(3):305–12. https://doi.org/10.1016/0160-2527(88)90017-9.

    Article  CAS  Google Scholar 

  3. Fazel S, Seewald K. Severe mental illness in 33 588 prisoners worldwide: systematic review and meta-regression analysis. Br J Psychiatry. 2012;200(5):364–73. https://doi.org/10.1192/bjp.bp.111.096370.

    Article  Google Scholar 

  4. Mullen PE, Burgess P, Wallace C, Palmer S, Ruschena D. Community care and criminal offending in schizophrenia. Lancet. 2000;355(9204):614–7. https://doi.org/10.1016/S0140-6736(99)05082-5.

    Article  CAS  Google Scholar 

  5. Simpson AIF, et al. Homicide and mental illness in New Zealand, 1970-2000. Br J Psychiatry. 2004;185:394–8. https://doi.org/10.1192/bjp.185.5.394.

    Article  Google Scholar 

  6. Hodgins S, Alderton J, Cree A, Aboud A, Mak T. Aggressive behaviour, victimisation and crime among severely mentally ill patients requiring hospitalisation. Br J Psychiatry. 2007;191:343–50. https://doi.org/10.1192/bjp.bp.106.06.029587.

    Article  Google Scholar 

  7. Chang Z, Larsson H, Lichtenstein P, Fazel S. Psychiatric disorders and violent reoffending: a national cohort study of convicted prisoners in Sweden. Lancet Psychiatry. 2015;2(10):891–900. https://doi.org/10.1016/S2215-0366(15)00234-5.

    Article  Google Scholar 

  8. Chang Z, Lichtenstein P, Langström N, Larsson H, Fazel S. Association between prescription of major psychotropic medications and violent reoffending after prison release. JAMA. 2016;316(17):1798–807. https://doi.org/10.1001/jama.2016.15380.

    Article  Google Scholar 

  9. Coid JW, et al. Psychiatric diagnosis and differential risks of offending following discharge. Int J Law Psychiatry. 2015;38:68–74. https://doi.org/10.1016/j.ijlp.2015.01.009.

    Article  Google Scholar 

  10. Coid J, Mickey N, Kahtan N, Zhang T, Yang M. Patients discharged from medium secure forensic psychiatry services: reconvictions and risk factors. Br J Psychiatry. 2007;190:223–9. https://doi.org/10.1192/bjp.bp.105.018788.

    Article  Google Scholar 

  11. Morgan VA, et al. A whole-of-population study of the prevalence and patterns of criminal offending in people with schizophrenia and other mental illness. Psychol Med. 2013;43(9):1869–80. https://doi.org/10.1017/S0033291712002887.

    Article  CAS  Google Scholar 

  12. Moore KE, et al. Psychiatric disorders and crime in the US population: results from the national epidemiologic survey on alcohol and related conditions wave III. J Clin Psychiatry. 2019;80(2):18m12317. https://doi.org/10.4088/JCP.18m12317.

    Article  Google Scholar 

  13. Fazel S, Grann M. The population impact of severe mental illness on violent crime. Am J Psychiatry. 2006;163(8):1397–403. https://doi.org/10.1176/ajp.2006.163.8.1397.

    Article  Google Scholar 

  14. Clark T. Review of Forensic psychiatry: clinical, legal and ethical issues (2nd edn). Br J Psychiatry. 2015;206(1):82–3. https://doi.org/10.1192/bjp.bp.114.150524.

    Article  Google Scholar 

  15. Murray J, Thomson DME. Clinical judgement in violence risk assessment. Eur J Psychol. 2010;6(1):128. https://doi.org/10.5964/ejop.v6i1.175.

    Article  Google Scholar 

  16. Sreenivasan S, Kirkish P, Garrick T, Weinberger LE, Phenix A. Actuarial risk assessment models: a review of critical issues related to violence and sex-offender recidivism assessments. J Am Acad Psychiatry Law. 2000;28(4):438–48.

    CAS  Google Scholar 

  17. Hart SD, Michie C, Cooke DJ. Precision of actuarial risk assessment instruments: evaluating the ‘margins of error’ of group v. individual predictions of violence. Br J Psychiatry. 2007;49:s60–5. https://doi.org/10.1192/bjp.190.5.s60.

    Article  Google Scholar 

  18. Thomson L, Davidson M, Brett C, Steele J, Darjee R. Risk assessment in forensic patients with schizophrenia: the predictive validity of actuarial scales and symptom severity for offending and violence over 8 – 10 years. Int J Forensic Ment Health. 2008;7(2):173–89. https://doi.org/10.1080/14999013.2008.9914413.

    Article  Google Scholar 

  19. McNeil AJ, Frey R, Embrechts P. Quantitative risk management: concepts, techniques, and tools. J Am Stat Assoc. 2005;101(476):1731–2. https://doi.org/10.1198/jasa.2006.s156.

    Article  Google Scholar 

  20. Jed Frees EW, Derrig RA, Meyers G. Predictive modeling in actuarial science. In: Predictive modeling applications in actuarial science: vol. I: predictive modeling techniques. 2014. https://doi.org/10.1017/CBO9781139342674.001.

  21. Gerds TA, Cai T, Schumacher M. The performance of risk prediction models. Biom J. 2008;50(4):457–79. https://doi.org/10.1002/bimj.200810443.

    Article  Google Scholar 

  22. Bennett KP, Parrado-Hernández E. The interplay of optimization and machine learning research. J Mach Learn Res. 2006;7:1265–81.

    Google Scholar 

  23. Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine learning. 2017. p. 1–13.

    Google Scholar 

  24. Cheng TH, Wei CP, Tseng VS. Feature selection for medical data mining: comparisons of expert judgment and automatic approaches. In: Proceedings—IEEE symposium on computer-based medical systems; 2006. https://doi.org/10.1109/CBMS.2006.87.

  25. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. Feature selection for high-dimensional data. Prog Artif Intell. 2016;5:65–75. https://doi.org/10.1007/s13748-015-0080-y.

    Article  Google Scholar 

  26. Eher R, Rettenberger M, Matthes A, Boer DP. Prospective actuarial risk assessment: a comparison of five risk assessment instruments in different sexual offender subtypes. Int J Offender Ther Comp Criminol. 2010;54(2):169–86. https://doi.org/10.1177/0306624X08328755.

    Article  Google Scholar 

  27. Delfin C, et al. Prediction of recidivism in a long-term follow-up of forensic psychiatric patients: incremental effects of neuroimaging data. PLoS One. 2019;14(5):e0217127. https://doi.org/10.1371/journal.pone.0217127.

    Article  CAS  Google Scholar 

  28. Kirchebner J, Sonnweber M, Nater UM, Günther M, Lau S. Stress, schizophrenia, and violence: a machine learning approach. J Interpers Violence. 2020;37(1–2):602–22. https://doi.org/10.1177/0886260520913641.

    Article  Google Scholar 

  29. Cope LM, et al. Abnormal brain structure in youth who commit homicide. Neuroimage Clin. 2014;4:800–7. https://doi.org/10.1016/j.nicl.2014.05.002.

    Article  CAS  Google Scholar 

  30. Haarsma G, et al. Assessing risk among correctional community probation populations: predicting reoffense with mobile neurocognitive assessment software. Front Psychol. 2020;10:2926. https://doi.org/10.3389/fpsyg.2019.02926.

    Article  Google Scholar 

  31. Vilares I, et al. Predicting the knowledge-recklessness distinction in the human brain. Proc Natl Acad Sci U S A. 2017;114(12):3222–7. https://doi.org/10.1073/pnas.1619385114.

    Article  CAS  Google Scholar 

  32. Fortunati F, Southwick S, Temporini H, Morgan CA. Malingering and forensic psychiatry. Psychiatry. 2005;2(12):25–8.

    Google Scholar 

  33. Rumschik SM, Appel JM. Malingering in the psychiatric emergency department: prevalence, predictors, and outcomes. Psychiatr Serv. 2019;70:115–22.

    Article  Google Scholar 

  34. Monaro M, et al. The detection of malingering: a new tool to identify made-up depression. Front. Psychiatry. 2018; https://doi.org/10.3389/fpsyt.2018.00249.

  35. Mazza C, et al. Introducing machine learning to detect personality faking-good in a male sample: a new model based on Minnesota multiphasic personality inventory-2 restructured form scales and reaction times. Front Psychiatry. 2019;9:249. https://doi.org/10.3389/fpsyt.2019.00389.

    Article  Google Scholar 

  36. Pace G, et al. Malingering detection of cognitive impairment with the b test is boosted using machine learning. Front Psychol. 2019;10:1650. https://doi.org/10.3389/fpsyg.2019.01650. PM: 31396127.

    Article  Google Scholar 

  37. Kotsiantis SB. Feature selection for machine learning classification problems: a recent overview. Artif Intell Rev. 2011;42:157. https://doi.org/10.1007/s10462-011-9230-1.

    Article  Google Scholar 

  38. Raghu V, Ge X, Chrysanthis P, Benos P. Integrated theory- and data-driven feature selection in gene expression data analysis. Proc Int Conf Data Eng. 2017;1525–1532 https://doi.org/10.1109/ICDE.2017.223.

  39. Palijan TŽ, Mužini L, Radeljak S. Psychiatric comorbidity in forensic psychiatry. Psychiatria Danubina. 2009;21:429–36.

    Google Scholar 

  40. Kay SR, Qpjer LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1982;13(2):261–76.

    Article  Google Scholar 

  41. Young RC, Biggs JT, Ziegler V, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–35.

    Article  CAS  Google Scholar 

  42. Davidson J, Turnbull CD, Strickland R, Miller R, Graves K. The Montgomery-Asberg Depression Scale: reliability and validity. Acta Psychiatr Scand. 1986;73:544–8.

    Article  CAS  Google Scholar 

  43. Lally J, Gaughran F, Timms P, Curran SR. Treatment-resistant schizophrenia: current insights on the pharmacogenomics of antipsychotics. Pharmgenomics Pers Med. 2016;117–129

    Google Scholar 

  44. Conley RR, Kelly DL. Management of treatment resistance in schizophrenia. Biol Psychiatry. 2001;50:898–911.

    Article  CAS  Google Scholar 

  45. Grira N, Crucianu M, Boujemaa N. Unsupervised and semi-supervised clustering: a brief survey. A Rev Mach Learn Tech Process Multimed Content, Rep MUSCLE Eur Netw Excell. 2004; https://doi.org/10.1021/jp303679y.

  46. Insel TR, Cuthbert BN. Brain disorders? Precisely: precision medicine comes to psychiatry. Science. 2015;348(6234):499–500. https://doi.org/10.1126/science.aab2358.

    Article  CAS  Google Scholar 

  47. Grira N, Crucianu M, Boujemaa N, Rocquencourt I. Unsupervised and semi-supervised clustering: a brief survey. A Rev Mach Learn Tech Process Multimed Content. 2005;1–12

    Google Scholar 

  48. Sundararajan M, Najmi A. The many Shapley values for model explanation. In: International conference on machine learning; 2020.

    Google Scholar 

  49. Lundberg SM, et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020;2:56–67. https://doi.org/10.1038/s42256-019-0138-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Watts, D. (2023). The Use of Machine Learning Techniques to Solve Problems in Forensic Psychiatry. In: Passos, I.C., Rabelo-da-Ponte, F.D., Kapczinski, F. (eds) Digital Mental Health. Springer, Cham. https://doi.org/10.1007/978-3-031-10698-9_14

Download citation

Publish with us

Policies and ethics